Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nicotine Tob Res ; 18(11): 2169-2173, 2016 11.
Article in English | MEDLINE | ID: mdl-27217475

ABSTRACT

INTRODUCTION: Sweeteners in tobacco products may influence use initiation and reinforcement, with special appeal to adolescents. Recent analytical studies of smokeless tobacco products (snuff, snus, dissolvables) detected flavorants identical to those added to confectionary products such as hard candy and chewing gum. However, these studies did not determine the levels of sweeteners. The objective of the present study was to quantify added sweeteners in smokeless tobacco products, a dissolvable product, electronic cigarette liquids and to compare with sweetener levels in confectionary products. METHODS: Sweetener content of US-sourced smokeless tobacco, electronic cigarette liquid, and confectionary product samples was analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). RESULTS: All smokeless products contained synthetic high intensity sweeteners, with snus and dissolvables exceeding levels in confectionary products (as much as 25-fold). All snus samples contained sucralose and most also aspartame, but no saccharin. In contrast, all moist snuff samples contained saccharin. The dissolvable sample contained sucralose and sorbitol. Ethyl maltol was the most common sweet-associated component in electronic cigarette liquids. DISCUSSION: Sweetener content was dependent on product category, with saccharin in moist snuff, an older category, sucralose added at high levels to more recently introduced products (snus, dissolvable) and ethyl maltol in electronic cigarette liquid. The very high sweetener concentrations may be necessary for the consumer to tolerate the otherwise aversive flavors of tobacco ingredients. Regulation of sweetener levels in smokeless tobacco products may be an effective measure to modify product attractiveness, initiation and use patterns. IMPLICATIONS: Dissolvables, snus and electronic cigarettes have been promoted as risk-mitigation products due to their relatively low content of nitrosamines and other tobacco toxicants. This study is the first to quantify high intensity sweeteners in snus and dissolvable products. Snus and dissolvables contain the high intensity sweetener, sucralose, at levels higher than in confectionary products. The high sweetness of alternative tobacco products makes these products attractive to adolescents. Regulation of sweetener content in non-cigarette products is suggested as an efficient means to control product palatability and to reduce initiation in adolescents.


Subject(s)
Electronic Nicotine Delivery Systems , Nitrosamines/analysis , Non-Nutritive Sweeteners/analysis , Tobacco Products/analysis , Tobacco, Smokeless/analysis , Adolescent , Adolescent Behavior , Behavior, Addictive , Chromatography, Liquid , Connecticut , Humans
2.
Bioresour Technol ; 161: 78-83, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24686374

ABSTRACT

An isolated, solvent-extracted lignin from candlenut (Aleurites moluccana) biomass was subjected to catalytic depolymerization in the presence of supercritical methanol, using a range of porous metal oxides derived from hydrotalcite-like precursors. The most effective catalysts in terms of lignin conversion to methanol-soluble products, without char formation, were based on copper in combination with other dopants based on relatively earth-abundant metals. Nearly complete conversion of lignin to bio-oil composed of monomers and low-mass oligomers with high aromatic content was obtained in 6h at 310°C using a catalyst based on a Cu- and La-doped hydrotalcite-like precursor. Product mixtures were characterized by NMR spectroscopy, gel permeation chromatography, and GC-MS.


Subject(s)
Copper/chemistry , Lignin/chemistry , Methanol/chemistry , Oxides/chemistry , Catalysis , Euphorbiaceae , Lignin/isolation & purification
3.
Bioresour Technol ; 121: 445-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22853967

ABSTRACT

Dewatering of the green algae Neochloris oleoabundans by flocculation was investigated for chitosan biopolymer, ferric sulfate, and alum. Chitosan was found to be most effective flocculant, with an optimum dose of 100mg/L algae broth. Zeta potential measurements suggest the mechanism involves both adsorption and charge neutralization processes. Life cycle assessment (LCA) was used to compare the chitosan method to other flocculation methods as well as centrifugation and filtration/chamber press processes. LCA showed that among these techniques, flocculation by chitosan is the least energy intensive and had the lowest impacts across all other categories of environmental impacts. The results are discussed in the overall context of biofuel production from algal biomass.


Subject(s)
Biofuels , Biotechnology/methods , Chitosan/chemistry , Chlorophyta/growth & development , Environment , Alum Compounds , Biomass , Centrifugation/methods , Ferric Compounds , Filtration/methods , Flocculation
4.
Chem Soc Rev ; 41(4): 1499-518, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22006024

ABSTRACT

This critical review focuses on the origins and preparation of bio-based surfactants, defined here as non-soap, amphiphilic molecules in which the carbon atoms are derived from annually renewable feedstocks. Environmental concerns and market pressures have led to greater relevance of these chemicals in commercial applications in recent years and extensive research has gone into exploring new classes of surfactants. Highlighted here are examples of bio-based surfactants that are produced on an industrial scale and/or are based on abundant starting materials. The trend of increasing use of renewable resources as starting materials for surfactants is introduced, followed by extensive discussion of the major classes of bio-derived hydrophobes and hydrophiles. Also discussed is the status of research and development with regard to biosynthetically produced surfactants. Finally, concluding remarks address the potential for new surfactant molecular structures as a result of ongoing development in the chemistry of biorefineries, i.e., that the transformation of lignocellulose into fuels is likely to support the manufacturing of new bio-based coproducts (238 references).

5.
ACS Macro Lett ; 1(1): 184-189, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-35578476

ABSTRACT

Large-area uniform magnetic alignment of a self-assembled diblock copolymer has been achieved by the selective sequestration of rigid moieties with anisotropic diamagnetic susceptibility within one block of the system. The species is based on a biphenyl core and is confined in the acrylic acid domains of a poly(styrene-b-acrylic acid) block copolymer by hydrogen bonding between an imidazole headgroup and the acrylic acid units. Microphase separation produces hierarchically ordered systems of smectic layers within lamellae and smectic layers in the matrix surrounding hexagonally packed poly(styrene) cylinders, as a function of imidazole/acrylic acid stoichiometry. The magnetic field aligns the smectic layers as well as the block copolymer superstructure in a manner dependent on the anchoring condition of the biphenyl species at the block copolymer interface. Surprisingly, this is found to depend on the composition of the system. This approach is synergistic with recent efforts to engineer functional supramolecular block copolymer assemblies based on rigid chromophores. It offers a facile route to large area control of microstructure as required for full exploitation of functional properties in these systems.

6.
Environ Sci Technol ; 45(18): 7882-7, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21823671

ABSTRACT

Iron TAML activators (oxidation catalysts based upon tetraamido macrocyclic ligands) at nanomolar concentrations in water activate hydrogen peroxide to rapidly degrade sertraline, the persistent, active pharmaceutical ingredient (API) in the widely used drug Zoloft. Although all the API is readily consumed, degradation slows significantly at one intermediate, sertraline ketone. The process occurs from neutral to basic pH. The pathway has been characterized through four early intermediates which reflect the metabolism of sertraline, providing further evidence that TAML activator/peroxide reactive intermediates mimic those of cytochrome P450 enzymes. TAML catalysts have been designed to exhibit considerable variability in reactivity and this provides an excellent tool for observing degradation intermediates of widely differing stabilities. Two elusive, hydrolytically sensitive intermediates and likely human metabolites, sertraline imine and N-desmethylsertraline imine, could be identified only by using a fast-acting catalyst. The more stable intermediates and known human metabolites, desmethylsertraline and sertraline ketone, were most easily detected and studied using a slow-acting catalyst. The resistance of sertraline ketone to aggressive TAML activator/peroxide treatment marks it as likely to be environmentally persistent and signals that its environmental effects are important components of the full implications of sertraline use.


Subject(s)
Hydrogen Peroxide/chemistry , Iron Compounds/chemistry , Macrocyclic Compounds/chemistry , Sertraline/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Antidepressive Agents/chemistry , Biomimetics , Catalysis , Ligands
7.
J Agric Food Chem ; 58(18): 10045-8, 2010 Sep 22.
Article in English | MEDLINE | ID: mdl-20722427

ABSTRACT

Lignin from candlenut shells was isolated using an ethanol-water accelerated solvent extraction method. Yields (based on Klason lignin) increased from about 14 to 33% as temperature increased from 100 to 195 °C and were also influenced by the amount of aqueous acid used to precipitate lignin from the extraction liquor. These yields were higher than could be obtained using a conventional dioxane-water acidolysis method. The resulting lignin was characterized by IR, 31P NMR, and 1H-13C HMQC NMR spectroscopic techniques. The lignin contained predominantly guaiacyl units, and both the total hydroxyl group content and phenolic hydroxyl group content were high.


Subject(s)
Aleurites/chemistry , Industrial Waste/analysis , Lignin/analysis , Lignin/isolation & purification , Biofuels/economics , Chemical Industry/economics , Industrial Waste/economics , Lignin/chemistry , Solvents
8.
Environ Sci Technol ; 42(4): 1296-300, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18351108

ABSTRACT

Endocrine disrupting chemicals (EDCs) impair living organisms by interfering with hormonal processes controlling cellular development Reduction of EDCs in water by an environmentally benign method is an important green chemistry goal. One EDC, 17alpha-ethinylestradiol (EE2), the active ingredient in the birth control pill, is excreted by humans to produce a major source of artificial environmental estrogenicity, which is incompletely removed by currenttechnologies used by municipal wastewater treatment plants (MWTPs). Natural estrogens found in animal waste from concentrated animal feeding operations (CAFOs) can also increase estrogenic activity of surface waters. An iron-tetraamidomacrocyclic ligand (Fe-TAML) activator in trace concentrations activates hydrogen peroxide and was shown to rapidly degrade these natural and synthetic reproductive hormones found in agricultural and municipal effluent streams. On the basis of liquid chromatography tandem mass spectrometry, apparent half-lives for 17 alpha- and 17 beta-estradiol, estriol, estrone, and EE2 in the presence of Fe-TAML and hydrogen peroxide were approximately 5 min and included a concomitant loss of estrogenic activity as established by E-Screen assay.


Subject(s)
Endocrine Disruptors/chemistry , Estrogens/chemistry , Macrocyclic Compounds/chemistry , Peroxides/chemistry , Catalysis , Chromatography, Liquid , Magnetic Resonance Spectroscopy , Tandem Mass Spectrometry
9.
J Am Chem Soc ; 130(13): 4497-506, 2008 Apr 02.
Article in English | MEDLINE | ID: mdl-18335938

ABSTRACT

The iron(III) complexes of tetra amidato macrocyclic ligands (TAMLs) ([Fe{1-X1-2-X2C6H2-4,5-(NCOCMe2NCO)2CR2}(OH2)]- , 1: X1 = X2 = H, R2 = Me2 (a), R2 = (CH2)2 (b); X1 = X2 = Cl, R2 = F2 (c), etc.), which the proton is known to demetalate at pH < 3, are also subject to catalyzed demetalation by Brønsted acid buffer components at pH 4-9 such as H2PO4-, HSO3-, and CH3CO2H, HO2CCH2CO2-. Buffers based on pyridine (py) and tris(hydroxymethyl)aminomethane (TRIS) are catalytically inactive. Where reactions proceed, the products are demetalated TAMLs and iron species of variable composition. Pseudo-first-order rate constants for the demetalation (kobs) are linear functions of the acid concentrations, and the effective second-order rate constants k1,eff have a hyperbolic dependence on [H+] (k1,eff = a1[H+]/(b1+[H+]). The rate of demetalation of 1a in H2PO4-/HPO42- buffer is appreciable, but the kobs values for 1b and 1c are immeasurably low, showing that the rates are strongly affected by the CR2 or "tail" fragments, which are known to potently affect the TAML basicity. The reactivities of 1 depend insignificantly on the aromatic ring or "head" group of 1. The proposed mechanism involves precoordination of the acidic buffer species followed by hydrolysis. The demetalating abilities of buffer species depend on their structures and acidities. Thus, although pyridine-2-carboxylic (picolinic) acid catalyzes the demetalation, its 3- and 4-isomers (nicotinic and isonicotininc acids) are inactive. The difference is rationalized to result from the ability that only coordinated picolinic acid has to deliver a proton to an amidato nitrogen in an intramolecular manner. The reaction order in picolinic acid equals one for 1a and two for 1b. For 1b, "inactive" pyridine and nicotinic acid speed up the demetalation in the presence of picolinic acid, suggesting that the second order arises from the axial binding of two pyridine molecules, one of which must be picolinic acid. The binding of pyridine- and imidazole-type ligands was confirmed by UV/vis equilibrium measurements and X-ray crystallography. The implications of these mechanistic findings for designing superior Fe-TAML oxidation catalysts and catalyst formulations are discussed using the results of DFT calculations.


Subject(s)
Amides/chemistry , Ferric Compounds/chemistry , Ferric Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/chemical synthesis , Azides/chemistry , Carboxylic Acids/chemistry , Catalysis , Crystallography, X-Ray , Hydrogen-Ion Concentration , Hydrolysis , Imidazoles/chemistry , Kinetics , Ligands , Models, Chemical , Models, Molecular , Molecular Conformation , Oxidation-Reduction , Phosphates/chemistry , Pyridines/chemistry , Stereoisomerism , Thermodynamics , Water/chemistry
10.
J Am Chem Soc ; 127(8): 2505-13, 2005 Mar 02.
Article in English | MEDLINE | ID: mdl-15725005

ABSTRACT

The reaction between an Fe(III) complex and O(2) to afford a stable catalytically active diiron(IV)-mu-oxo compound is described. Phosphonium salts of orange five-coordinated Fe(III)-TAML complexes with an axial aqua ligand ([PPh(4)]1-H(2)O, tetraamidato macrocyclic Fe(III) species derived from 3,3,6,6,9,9-hexamethyl-3,4,8,9-tetrahydro-1H-1,4,8,11-benzotetraazacyclotridecine-2,5,7,10(6H,11H)-tetraone) react rapidly with O(2) in CH(2)Cl(2) or other weakly coordinating solvents to produce black mu-oxo-bridged diiron(IV) complexes, 2, in high yields. Complexes 2 have been characterized by X-ray crystallography (2 cases), microanalytical data, mass spectrometry, UV/Vis, Mossbauer, and (1)H NMR spectroscopies. Mossbauer data show that the diamagnetic Fe-O-Fe unit contains antiferromagnetically coupled S = 1 Fe(IV) sites; diamagnetic (1)H NMR spectra are observed. The oxidation of PPh(3) to OPPh(3) by 2 was confirmed by UV/Vis and GC-MS. Labeling experiments with (18)O(2) and H(2)(18)O established that the bridging oxygen atom of 2 derives from O(2). Complexes 2 catalyze the selective oxidation of benzylic alcohols into the corresponding aldehydes and bleach rapidly organic dyes, such as Orange II in MeCN-H(2)O mixtures; reactivity evidence suggests that free radical autoxidation is not involved. This work highlights a promising development for the advancement of green oxidation technology, as O(2) is an abundant, clean, and inexpensive oxidizing agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...