Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Res ; 199(5): 439-451, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37237442

ABSTRACT

Radiation models, such as whole thorax lung irradiation (WTLI) or partial-body irradiation (PBI) with bone-marrow sparing, have shown that affected lung tissue displays a continual progression of injury, often for months after the initial insult. Undoubtably, a variety of resident and infiltrating cell types either contribute to or fail to resolve this type of progressive injury, which in lung tissue, often develops into lethal and irreversible radiation-induced pulmonary fibrosis (RIPF), indicating a failure of the lung to return to a homeostatic state. Resident pulmonary epithelium, which are present at the time of irradiation and persist long after the initial insult, play a key role in the maintenance of homeostatic conditions in the lung and have often been described as contributing to the progression of radiation-induced lung injury (RILI). In this study, we took an unbiased approach through RNA sequencing to determine the in vivo response of the lung epithelium in the progression of RIPF. In our methodology, we isolated CD326+ epithelium from the lungs of 12.5 Gy WTLI C57BL/6J female mice (aged 8-10 weeks and sacrificed at regular intervals) and compared irradiated and non-irradiated CD326+ cells and whole lung tissue. We subsequently verified our findings by qPCR and immunohistochemistry. Transcripts associated with epithelial regulation of immune responses and fibroblast activation were significantly reduced in irradiated animals at 4 weeks postirradiation. Additionally, alveolar type-2 epithelial cells (AEC2) appeared to be significantly reduced in number at 4 weeks and thereafter based on the diminished expression of pro-surfactant protein C (pro-SPC). This change is associated with a reduction of Cd200 and cyclooxygenase 2 (COX2), which are expressed within the CD326 populations of cells and function to suppress macrophage and fibroblast activation under steady-state conditions, respectively. These data indicate that either preventing epithelial cell loss that occurs after irradiation or replacing important mediators of immune and fibroblast activity produced by the epithelium are potentially important strategies for preventing or treating this unique injury.


Subject(s)
Lung Injury , Pulmonary Fibrosis , Animals , Mice , Female , Lung Injury/etiology , Lung Injury/metabolism , Mice, Inbred C57BL , Lung/radiation effects , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/metabolism , Inflammation/pathology
2.
Radiat Res ; 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36928358

ABSTRACT

Radiation models, such as whole thorax lung irradiation (WTLI) or partial-body irradiation (PBI) with bone-marrow sparing, have shown that affected lung tissue displays a continual progression of injury, often for months after the initial insult. Undoubtably, a variety of resident and infiltrating cell types either contribute to or fail to resolve this type of progressive injury, which in lung tissue, often develops into lethal and irreversible radiation-induced pulmonary fibrosis (RIPF), indicating a failure of the lung to return to a homeostatic state. Resident pulmonary epithelium, which are present at the time of irradiation and persist long after the initial insult, play a key role in the maintenance of homeostatic conditions in the lung and have often been described as contributing to the progression of radiation-induced lung injury (RILI). In this study, we took an unbiased approach through RNA sequencing to determine the in vivo response of the lung epithelium in the progression of RIPF. In our methodology, we isolated CD326+ epithelium from the lungs of 12.5 Gy WTLI C57BL/6J female mice (aged 8-10 weeks and sacrificed at regular intervals) and compared irradiated and non-irradiated CD326+ cells and whole lung tissue. We subsequently verified our findings by qPCR and immunohistochemistry. Transcripts associated with epithelial regulation of immune responses and fibroblast activation were significantly reduced in irradiated animals at 4 weeks postirradiation. Additionally, alveolar type-2 epithelial cells (AEC2) appeared to be significantly reduced in number at 4 weeks and thereafter based on the diminished expression of pro-surfactant protein C (pro-SPC). This change is associated with a reduction of Cd200 and cyclooxygenase 2 (COX2), which are expressed within the CD326 populations of cells and function to suppress macrophage and fibroblast activation under steady-state conditions, respectively. These data indicate that either preventing epithelial cell loss that occurs after irradiation or replacing important mediators of immune and fibroblast activity produced by the epithelium are potentially important strategies for preventing or treating this unique injury.

3.
Int J Radiat Biol ; 96(1): 129-144, 2020 01.
Article in English | MEDLINE | ID: mdl-30359147

ABSTRACT

Models of thoracic irradiation have been developed as clinicians and scientists have attempted to decipher the events that led up to the pulmonary toxicity seen in human subjects following radiation treatment. The most common model is that of whole thorax irradiation (WTI), applied in a single dose. Mice, particularly the C57BL/6J strain, has been frequently used in these investigations, and has greatly informed our current understanding of the initiation and progression of radiation-induced lung injury (RILI). In this review, we highlight the sequential progression and dynamic nature of RILI, focusing primarily on the vast array of information that has been gleaned from the murine model. Ample evidence indicates a wide array of biological responses that can be seen following irradiation, including DNA damage, oxidative stress, cellular senescence and inflammation, all triggered by the initial exposure to ionizing radiation (IR) and heterogeneously maintained throughout the temporal progression of injury, which manifests as acute pneumonitis and later fibrosis. It appears that the early responses of specific cell types may promote further injury, disrupting the microenvironment and preventing a return to homeostasis, although the exact mechanisms driving these responses remains somewhat unclear. Attempts to either prevent or treat RILI in preclinical models have shown some success by targeting these disparate radiobiological processes. As our understanding of the dynamic cellular responses to radiation improves through the use of such models, so does the likelihood of preventing or treating RILI.


Subject(s)
Radiation Pneumonitis , Thorax/radiation effects , Animals , Fibrosis , Humans , Radiation Pneumonitis/pathology , Time Factors
4.
Int J Radiat Biol ; 94(12): 1104-1115, 2018 12.
Article in English | MEDLINE | ID: mdl-30238842

ABSTRACT

PURPOSE: Radiation-induced lung injuries (RILI), namely radiation pneumonitis and/or fibrosis, are dose-limiting outcomes following treatment for thoracic cancers. As part of a search for mitigation targets, we sought to determine if persistent DNA damage is a characteristic of this progressive injury. METHODS: C57BL/6J female mice were sacrificed at 24 h, 1, 4, 12, 16, 24 and 32 weeks following a single dose of 12.5 Gy thorax only gamma radiation; their lungs were compared to age-matched unirradiated animals. Tissues were examined for DNA double-strand breaks (DSBs) (γ-H2A.X and p53bp1), cellular senescence (senescence-associated beta-galactosidase and p21) and oxidative stress (malondialdehyde). RESULTS: Data revealed consistently higher numbers of DSBs compared to age-matched controls, with increases in γ-H2A.X positivity beyond 24 h post-exposure, particularly during the pathological phases, suggesting periods of recurrent DNA damage. Additional intermittent increases in both cellular senescence and oxidative stress also appeared to coincide with pneumonitis and fibrosis. CONCLUSIONS: These novel, long-term data indicate (a) increased and persistent levels of DSBs, oxidative stress and cellular senescence may serve as bioindicators of RILI, and (b) prevention of genotoxicity, via mitigation of free radical production, continues to be a potential strategy for the prevention of pulmonary radiation injury.


Subject(s)
DNA Damage , Disease Progression , Radiation Pneumonitis/genetics , Animals , Cellular Senescence/genetics , Cellular Senescence/radiation effects , DNA Breaks, Double-Stranded/radiation effects , Female , Lipid Peroxidation/genetics , Lipid Peroxidation/radiation effects , Lung/metabolism , Lung/pathology , Lung/radiation effects , Mice, Inbred C57BL , Oxidative Stress/genetics , Oxidative Stress/radiation effects , Radiation Pneumonitis/metabolism , Radiation Pneumonitis/pathology , Time Factors
5.
Exp Lung Res ; 43(3): 134-149, 2017 04.
Article in English | MEDLINE | ID: mdl-28534660

ABSTRACT

Purpose/Aim of Study: Studies of pulmonary fibrosis (PF) have resulted in DNA damage, inflammatory response, and cellular senescence being widely hypothesized to play a role in the progression of the disease. Utilizing these aforementioned terms, genomics databases were interrogated along with the term, "pulmonary fibrosis," to identify genes common among all 4 search terms. Findings were compared to data derived from a model of radiation-induced progressive pulmonary fibrosis (RIPF) to verify that these genes are similarly expressed, supporting the use of radiation as a model for diseases involving PF, such as human idiopathic pulmonary fibrosis (IPF). MATERIALS AND METHODS: In an established model of RIPF, C57BL/6J mice were exposed to 12.5 Gy thorax irradiation and sacrificed at 24 hours, 1, 4, 12, and 32 weeks following exposure, and lung tissue was compared to age-matched controls by RNA sequencing. RESULTS: Of 176 PF associated gene transcripts identified by database interrogation, 146 (>82%) were present in our experimental model, throughout the progression of RIPF. Analysis revealed that nearly 85% of PF gene transcripts were associated with at least 1 other search term. Furthermore, of 22 genes common to all four terms, 16 were present experimentally in RIPF. CONCLUSIONS: This illustrates the validity of RIPF as a model of progressive PF/IPF based on the numbers of transcripts reported in both literature and observed experimentally. Well characterized genes and proteins are implicated in this model, supporting the hypotheses that DNA damage, inflammatory response and cellular senescence are associated with the pathogenesis of PF.


Subject(s)
Cellular Senescence/genetics , DNA Damage , Disease Progression , Inflammation , Pulmonary Fibrosis/pathology , Animal Diseases , Animals , Gene Expression Profiling , Mice, Inbred C57BL , Pulmonary Fibrosis/etiology , Sequence Analysis, RNA , Thorax/radiation effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...