Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 345: 118852, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37647732

ABSTRACT

Aquatic ecosystems world-wide are being irreversibly altered, suggesting that new and innovative management strategies are necessary to improve ecosystem function and sustainability. In river ecosystems degraded by dams environmental flows and selective withdrawal (SWD) infrastructure have been used to improve habitat for native species. Yet, few studies have quantified nutrient and food web export subsidies from upstream reservoirs, despite their potential to subsidize downstream riverine food webs. We sampled nutrient, phytoplankton, and zooplankton concentrations in outflows from the Shasta-Keswick reservoir complex in Northern California over a 12-month period to understand how SWD operation and internal reservoir conditions interact to influence subsidies to the Sacramento River. We found that nutrients, phytoplankton, and zooplankton were continuously exported from Shasta Reservoir to the Sacramento River and that gate operations at Shasta Dam were important in controlling exports. Further, our results indicate that gate operations and water-export depth strongly correlated with zooplankton community exports, whereas internal reservoir conditions (mixing and residence time) controlled concentrations of exported zooplankton biomass and chlorophyll a. These results demonstrate that reservoirs can be an important source of nutrient and food web subsidies and that selective withdrawal infrastructure may provide a valuable management tool to control ecosystem-level productivity downstream of dams.


Subject(s)
Ecosystem , Food Chain , Animals , Chlorophyll A , Biomass , Nutrients , Zooplankton
2.
PLoS One ; 15(10): e0234673, 2020.
Article in English | MEDLINE | ID: mdl-33002006

ABSTRACT

While flow is known to be a major driver of estuarine ecosystems, targeted flow manipulations are rare because tidal systems are extremely variable in space and time, and because the necessary infrastructure is rarely available. In summer 2018 we used a unique water control structure in the San Francisco Estuary (SFE) to direct a managed flow pulse into Suisun Marsh, one of the largest contiguous tidal marshes on the west coast of the United States. The action was designed to increase habitat suitability for the endangered Delta Smelt Hypomesus transpacificus, a small osmerid fish endemic to the upper SFE. The approach was to operate the Suisun Marsh Salinity Control Gates (SMSCG) in conjunction with increased Sacramento River tributary inflow to direct an estimated 160 x 106 m3 pulse of low salinity water into Suisun Marsh during August, a critical time period for juvenile Delta Smelt rearing. Three-dimensional modeling showed that directing additional low salinity water into Suisun Marsh ("Flow Action") substantially increased the area of low salinity habitat for Delta Smelt that persisted beyond the period of SMSCG operations. Field monitoring showed that turbidity and chlorophyll were at higher levels in Suisun Marsh, representing better habitat conditions, than the upstream Sacramento River region throughout the study period. The Flow Action had no substantial effects on zooplankton abundance, nor did Suisun Marsh show enhanced levels of these prey species in comparison to the Sacramento River. Fish monitoring data suggested that small numbers of Delta Smelt colonized Suisun Marsh from the Sacramento River during the 2018 Flow Action. Comparison of the salinity effects of the Flow Action to historical catch data for Suisun Marsh further supported our hypothesis that the Flow Action would have some benefit for this rare species. Our study provides insight into both the potential use of targeted flow manipulations to support endangered fishes such as Delta Smelt, and into the general response of estuarine habitat to flow management.


Subject(s)
Ecological Parameter Monitoring , Estuaries , Osmeriformes , Animals , Ecosystem , Endangered Species , Microcystis/growth & development , Osmeriformes/growth & development , Rivers , Salinity , San Francisco , Wetlands , Zooplankton/growth & development
3.
Ecology ; 96(2): 340-7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-26240855

ABSTRACT

While it is widely recognized that financial stock portfolios can be stabilized through diverse investments, it is also possible that certain habitats can function as natural portfolios that stabilize ecosystem processes. Here we propose and examine the hypothesis that free-flowing river networks act as such portfolios and confer stability through their integration of upstream geological, hydrological, and biological diversity. We compiled a spatially (142 sites) and temporally (1980-present) extensive data set on fisheries, water flows, and temperatures, from sites within one of the largest watersheds in the world that remains without dams on its mainstem, the Fraser River, British Columbia, Canada. We found that larger catchments had more stable fisheries catches, water flows, and water temperatures than smaller catchments. These data provide evidence that free-flowing river networks function as hierarchically nested portfolios with stability as an emergent property. Thus, free-flowing river networks can represent a natural system for buffering variation and extreme events.


Subject(s)
Ecosystem , Fishes/physiology , Water Movements , Animals , British Columbia , Environmental Monitoring , Fisheries , Humans , Rivers , Time Factors
4.
Am Nat ; 181(6): 799-814, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23669542

ABSTRACT

Among-individual heterogeneity in growth is a commonly observed phenomenon that has clear consequences for population and community dynamics yet has proved difficult to quantify in practice. In particular, observed among-individual variation in growth can be difficult to link to any given mechanism. Here, we develop a Bayesian state-space framework for modeling growth that bridges the complexity of bioenergetic models and the statistical simplicity of phenomenological growth models. The model allows for intrinsic individual variation in traits, a shared environment, process stochasticity, and measurement error. We apply the model to two populations of steelhead trout (Oncorhynchus mykiss) grown under common but temporally varying food conditions. Models allowing for individual variation match available data better than models that assume a single shared trait for all individuals. Estimated individual variation translated into a roughly twofold range in realized growth rates within populations. Comparisons between populations showed strong differences in trait means, trait variability, and responses to a shared environment. Together, individual- and population-level variation have substantial implications for variation in size and growth rates among and within populations. State-dependent life-history models predict that this variation can lead to differences in individual life-history expression, lifetime reproductive output, and population life-history diversity.


Subject(s)
Gene-Environment Interaction , Models, Biological , Oncorhynchus mykiss/growth & development , Animals , Bayes Theorem , Environment , Female , Genetic Fitness , Genetic Variation , Male , Models, Statistical , Oncorhynchus mykiss/genetics , Population Dynamics , Stochastic Processes
5.
Evol Appl ; 3(3): 221-43, 2010 May.
Article in English | MEDLINE | ID: mdl-25567921

ABSTRACT

We use a state dependent life history model to predict the life history strategies of female steelhead trout (Oncorhynchus mykiss) in altered environments. As a case study of a broadly applicable approach, we applied this model to the American and Mokelumne Rivers in central California, where steelhead are listed as threatened. Both rivers have been drastically altered, with highly regulated flows and translocations that may have diluted local adaptation. Nevertheless, evolutionary optimization models could successfully predict the life history displayed by fish on the American River (all anadromous, with young smolts) and on the Mokelumne River (a mix of anadromy and residency). The similar fitness of the two strategies for the Mokelumne suggested that a mixed strategy could be favored in a variable environment. We advance the management utility of this framework by explicitly modeling growth as a function of environmental conditions and using sensitivity analyses to predict likely evolutionary endpoints under changed environments. We conclude that the greatest management concern with respect to preserving anadromy is reduced survival of emigrating smolts, although large changes in freshwater survival or growth rates are potentially also important. We also demonstrate the importance of considering asymptotic size along with maximum growth rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...