Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Kidney Int Rep ; 8(7): 1417-1429, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37441484

ABSTRACT

Introduction: Urofacial, or Ochoa, syndrome (UFS) is an autosomal recessive disease featuring a dyssynergic bladder with detrusor smooth muscle contracting against an undilated outflow tract. It also features an abnormal grimace. Half of individuals with UFS carry biallelic variants in HPSE2, whereas other rare families carry variants in LRIG2.LRIG2 is immunodetected in pelvic ganglia sending autonomic axons into the bladder. Moreover, Lrig2 mutant mice have abnormal urination and abnormally patterned bladder nerves. We hypothesized that peripheral neurogenic defects underlie LRIG2-associated bladder dysfunction. Methods: We describe a new family with LRIG2-associated UFS and studied Lrig2 homozygous mutant mice with ex vivo physiological analyses. Results: The index case presented antenatally with urinary tract (UT) dilatation, and postnatally had urosepsis and functional bladder outlet obstruction. He had the grimace that, together with UT disease, characterizes UFS. Although HPSE2 sequencing was normal, he carried a homozygous, predicted pathogenic, LRIG2 stop variant (c.1939C>T; p.Arg647∗). Lrig2 mutant mice had enlarged bladders. Ex vivo physiology experiments showed neurogenic smooth muscle relaxation defects in the outflow tract, containing the urethra adjoining the bladder, and in detrusor contractility. Moreover, there were nuanced differences in physiological outflow tract defects between the sexes. Conclusion: Putting this family in the context of all reported UT disease-associated LRIG2 variants, the full UFS phenotype occurs with biallelic stop or frameshift variants, but missense variants lead to bladder-limited disease. Our murine observations support the hypothesis that UFS is a genetic autonomic neuropathy of the bladder affecting outflow tract and bladder body function.

2.
J Clin Transl Sci ; 7(1): e115, 2023.
Article in English | MEDLINE | ID: mdl-37250990

ABSTRACT

Patient and public involvement (PPI) must be more frequently embedded within clinical research to ensure translational outcomes are patient-led and meet patient needs. Active partnerships with patients and public groups are an important opportunity to hear patient voices, understand patient needs, and inform future research avenues. A hereditary renal cancer (HRC) PPI group was developed with the efforts of patient participants (n = 9), pooled from recruits within the early detection for HRC pilot study, working in collaboration with researchers and healthcare professionals (n = 8). Patient participants had HRC conditions including Von Hippel-Lindau (n = 3) and Hereditary Leiomyomatosis and Renal Cell Carcinoma (n = 5), and public participants included two patient Trustees (n = 2) from VHL UK & Ireland Charity. Discussions among the enthusiastic participants guided the development of a novel patient information sheet for HRC patients. This communication tool was designed to aid patients when informing family members about their diagnoses and the wider implications for relatives, a gap identified by participants within group discussions. While this partnership was tailored for a specific HRC patient and public group, the process implemented can be employed for other hereditary cancer groups and could be transferable within other healthcare settings.

3.
Clin Dysmorphol ; 32(1): 7-13, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36503917

ABSTRACT

The 3MC syndromes types 1-3 (MIM#257920, 265050 and 248340, respectively) are rare autosomal recessive genetic disorders caused by pathogenic variants in genes encoding the lectin complement pathway. Patients with 3MC syndrome have a distinctive facial phenotype including hypertelorism, highly arched eyebrows and ptosis. A significant number of patients have bilateral cleft lip and palate and they often exhibit genitourinary and skeletal anomalies. A clinical clue to 3MC syndrome is the presence of a characteristic caudal appendage. Genetic variants in MASP1, COLEC11 and COLEC10 genes have been identified as the causation of this syndrome, yet relatively few patients have been described so far. We consolidate and expand current knowledge of phenotypic features and molecular diagnosis of 3MC syndrome by describing the clinical and molecular findings in five patients. This includes follow-up of two brothers whose clinical phenotypes were first reported by Crisponi et al in 1999. Our study contributes to the evolving clinical and molecular spectrum of 3MC syndrome.


Subject(s)
Cleft Lip , Cleft Palate , Hypertelorism , Humans , Male , Phenotype , Face , Collectins
4.
Commun Biol ; 5(1): 1203, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36352089

ABSTRACT

Classic bladder exstrophy represents the most severe end of all human congenital anomalies of the kidney and urinary tract and is associated with bladder cancer susceptibility. Previous genetic studies identified one locus to be involved in classic bladder exstrophy, but were limited to a restrict number of cohort. Here we show the largest classic bladder exstrophy genome-wide association analysis to date where we identify eight genome-wide significant loci, seven of which are novel. In these regions reside ten coding and four non-coding genes. Among the coding genes is EFNA1, strongly expressed in mouse embryonic genital tubercle, urethra, and primitive bladder. Re-sequence of EFNA1 in the investigated classic bladder exstrophy cohort of our study displays an enrichment of rare protein altering variants. We show that all coding genes are expressed and/or significantly regulated in both mouse and human embryonic developmental bladder stages. Furthermore, nine of the coding genes residing in the regions of genome-wide significance are differentially expressed in bladder cancers. Our data suggest genetic drivers for classic bladder exstrophy, as well as a possible role for these drivers to relevant bladder cancer susceptibility.


Subject(s)
Bladder Exstrophy , Urinary Bladder Neoplasms , Humans , Animals , Mice , Bladder Exstrophy/genetics , Bladder Exstrophy/complications , Genome-Wide Association Study , Urinary Bladder Neoplasms/genetics , Transcriptome , Ephrin-A1/genetics
5.
Elife ; 112022 09 20.
Article in English | MEDLINE | ID: mdl-36124557

ABSTRACT

Posterior urethral valves (PUV) are the commonest cause of end-stage renal disease in children, but the genetic architecture of this rare disorder remains unknown. We performed a sequencing-based genome-wide association study (seqGWAS) in 132 unrelated male PUV cases and 23,727 controls of diverse ancestry, identifying statistically significant associations with common variants at 12q24.21 (p=7.8 × 10-12; OR 0.4) and rare variants at 6p21.1 (p=2.0 × 10-8; OR 7.2), that were replicated in an independent European cohort of 395 cases and 4151 controls. Fine mapping and functional genomic data mapped these loci to the transcription factor TBX5 and planar cell polarity gene PTK7, respectively, the encoded proteins of which were detected in the developing urinary tract of human embryos. We also observed enrichment of rare structural variation intersecting with candidate cis-regulatory elements, particularly inversions predicted to affect chromatin looping (p=3.1 × 10-5). These findings represent the first robust genetic associations of PUV, providing novel insights into the underlying biology of this poorly understood disorder and demonstrate how a diverse ancestry seqGWAS can be used for disease locus discovery in a rare disease.


Subject(s)
Genome-Wide Association Study , T-Box Domain Proteins/genetics , Urinary Tract , Cell Adhesion Molecules/genetics , Child , Chromatin , Humans , Male , Receptor Protein-Tyrosine Kinases/genetics , Transcription Factors/genetics
6.
Br J Dermatol ; 187(6): 948-961, 2022 12.
Article in English | MEDLINE | ID: mdl-35986704

ABSTRACT

BACKGROUND: Bazex-Dupré-Christol syndrome (BDCS; MIM301845) is a rare X-linked dominant genodermatosis characterized by follicular atrophoderma, congenital hypotrichosis and multiple basal cell carcinomas (BCCs). Previous studies have linked BDCS to an 11·4-Mb interval on chromosome Xq25-q27.1. However, the genetic mechanism of BDCS remains an open question. OBJECTIVES: To investigate the genetic aetiology and molecular mechanisms underlying BDCS. METHODS: We ascertained multiple individuals from eight unrelated families affected with BDCS (F1-F8). Whole-exome (F1 and F2) and genome sequencing (F3) were performed to identify putative disease-causing variants within the linkage region. Array comparative genomic hybridization and quantitative polymerase chain reaction (PCR) were used to explore copy number variations, followed by long-range gap PCR and Sanger sequencing to amplify the duplication junctions and to define the head-tail junctions. Hi-C was performed on dermal fibroblasts from two affected individuals with BDCS and one control. Public datasets and tools were used to identify regulatory elements and transcription factor binding sites within the minimal duplicated region. Immunofluorescence was performed in hair follicles, BCCs and trichoepitheliomas from patients with BDCS and sporadic BCCs. The ACTRT1 variant c.547dup (p.Met183Asnfs*17), previously proposed to cause BDCS, was evaluated with t allele frequency calculator. RESULTS: In eight families with BDCS, we identified overlapping 18-135-kb duplications (six inherited and two de novo) at Xq26.1, flanked by ARHGAP36 and IGSF1. Hi-C showed that the duplications did not affect the topologically associated domain, but may alter the interactions between flanking genes and putative enhancers located in the minimal duplicated region. We detected ARHGAP36 expression near the control hair follicular stem cell compartment, and found increased ARHGAP36 levels in hair follicles in telogen, in BCCs and in trichoepitheliomas from patients with BDCS. ARHGAP36 was also detected in sporadic BCCs from individuals without BDCS. Our modelling showed the predicted maximum tolerated minor allele frequency of ACTRT1 variants in control populations to be orders of magnitude higher than expected for a high-penetrant ultra-rare disorder, suggesting loss of function of ACTRT1 variants to be an unlikely cause for BDCS. CONCLUSIONS: Noncoding Xq26.1 duplications cause BDCS. The BDCS duplications most likely lead to dysregulation of ARHGAP36. ARHGAP36 is a potential therapeutic target for both inherited and sporadic BCCs. What is already known about this topic? Bazex-Dupré-Christol syndrome (BDCS) is a rare X-linked basal cell carcinoma susceptibility syndrome linked to an 11·4-Mb interval on chromosome Xq25-q27.1. Loss-of-function variants in ACTRT1 and its regulatory elements were suggested to cause BDCS. What does this study add? BDCS is caused by small tandem noncoding intergenic duplications at chromosome Xq26.1. The Xq26.1 BDCS duplications likely dysregulate ARHGAP36, the flanking centromeric gene. ACTRT1 loss-of-function variants are unlikely to cause BDCS. What is the translational message? This study provides the basis for accurate genetic testing for BDCS, which will aid precise diagnosis and appropriate surveillance and clinical management. ARHGAP36 may be a novel therapeutic target for all forms of sporadic basal cell carcinomas.


Subject(s)
Carcinoma, Basal Cell , Hypotrichosis , Humans , Carcinoma, Basal Cell/pathology , Comparative Genomic Hybridization , DNA Copy Number Variations/genetics , Germ Cells/pathology , Hypotrichosis/genetics , Hypotrichosis/pathology , Microfilament Proteins
7.
Front Genet ; 13: 896125, 2022.
Article in English | MEDLINE | ID: mdl-35812751

ABSTRACT

Urofacial (also called Ochoa) syndrome (UFS) is an autosomal recessive congenital disorder of the urinary bladder featuring voiding dysfunction and a grimace upon smiling. Biallelic variants in HPSE2, coding for the secreted protein heparanase-2, are described in around half of families genetically studied. Hpse2 mutant mice have aberrant bladder nerves. We sought to expand the genotypic spectrum of UFS and make insights into its pathobiology. Sanger sequencing, next generation sequencing and microarray analysis were performed in four previously unreported families with urinary tract disease and grimacing. In one, the proband had kidney failure and was homozygous for the previously described pathogenic variant c.429T>A, p.(Tyr143*). Three other families each carried a different novel HPSE2 variant. One had homozygous triplication of exons 8 and 9; another had homozygous deletion of exon 4; and another carried a novel c.419C>G variant encoding the missense p.Pro140Arg in trans with c.1099-1G>A, a previously reported pathogenic splice variant. Expressing the missense heparanase-2 variant in vitro showed that it was secreted as normal, suggesting that 140Arg has aberrant functionality after secretion. Bladder autonomic neurons emanate from pelvic ganglia where resident neural cell bodies derive from migrating neural crest cells. We demonstrated that, in normal human embryos, neuronal precursors near the developing hindgut and lower urinary tract were positive for both heparanase-2 and leucine rich repeats and immunoglobulin like domains 2 (LRIG2). Indeed, biallelic variants of LRIG2 have been implicated in rare UFS families. The study expands the genotypic spectrum in HPSE2 in UFS and supports a developmental neuronal pathobiology.

8.
J Pediatr Urol ; 18(3): 362.e1-362.e8, 2022 06.
Article in English | MEDLINE | ID: mdl-35491304

ABSTRACT

INTRODUCTION: Bladder exstrophy-epispadias complex (BEEC) comprises a spectrum of anterior midline congenital malformations, involving the lower urinary tract. BEEC is usually sporadic, but families with more than one affected member have been reported, and a twin concordance study supported a genetic contribution to pathogenesis. Moreover, diverse chromosomal aberrations have been reported in a small subset of individuals with BEEC. The commonest are 22q11.2 microduplications, identified in approximately 3% of BEEC index cases. OBJECTIVES: We aimed to refine the chromosome 22q11.2 locus, and to determine whether the encompassed genes are expressed in normal developing and mature human urinary bladders. RESULTS: Using DNA from an individual with CBE, the 22q11.2 duplicated locus was refined by identification of a maternally inherited 314 kb duplication (chr22:21,147,293-21,461,017), as depicted in this image. Moreover, the eight protein coding genes within the locus were found to be expressed during normal developing and mature bladders. To determine whether duplications in any of these individual genes were associated with CBE, we undertook copy number analyses in 115 individuals with CBE without duplications of the whole locus. No duplications of individual genes were found. DISCUSSION: The current study has refined the 22q11.2 locus associated with BEEC and has shown that the eight protein coding genes are expressed in human bladders both during antenatal development and postnatally. Nevertheless, the precise biological explanation as to why duplication of the phenocritical region of 22q11 confers increased susceptibility to BEEC remains to be determined. The fact that individuals with CBE without duplications of the whole locus also lacked duplication of any of the individual genes suggests that in individuals with BEEC and duplication of the 22q11.2 locus altered dosage of more than one gene may be important in BEEC etiology. CONCLUSIONS: The study has refined the 22q11.2 locus associated with BEEC and has shown that the eight protein coding genes within this locus are expressed in human bladders.


Subject(s)
Bladder Exstrophy , Epispadias , Bladder Exstrophy/genetics , Bladder Exstrophy/pathology , Chromosomes/metabolism , Epispadias/genetics , Epispadias/pathology , Female , Humans , Pregnancy , Urinary Bladder/abnormalities
9.
JAMA Pediatr ; 176(5): 486-492, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35311942

ABSTRACT

Importance: Aminoglycosides are commonly prescribed antibiotics used for the treatment of neonatal sepsis. The MT-RNR1 m.1555A>G variant predisposes to profound aminoglycoside-induced ototoxicity (AIO). Current genotyping approaches take several days, which is unfeasible in acute settings. Objective: To develop a rapid point-of-care test (POCT) for the m.1555A>G variant before implementation of this technology in the acute neonatal setting to guide antibiotic prescribing and avoid AIO. Design, Setting, and Participants: This pragmatic prospective implementation trial recruited neonates admitted to 2 large neonatal intensive care units between January 6, 2020, and November 30, 2020, in the UK. Interventions: Neonates were tested for the m.1555A>G variant via the rapid POCT on admission to the neonatal intensive care unit. Main Outcomes and Measures: The primary outcome assessed the proportion of neonates successfully tested for the variant of all infants prescribed antibiotics. Secondary outcomes measured whether implementation was negatively associated with routine clinical practice and the performance of the system. The study was statistically powered to detect a significant difference between time to antibiotic administration before and after implementation of the MT-RNR1 POCT. Results: A total of 751 neonates were recruited and had a median (range) age of 2.5 (0-198) days. The MT-RNR1 POCT was able to genotype the m.1555A>G variant in 26 minutes. Preclinical validation demonstrated a 100% sensitivity (95% CI, 93.9%-100.0%) and specificity (95% CI, 98.5%-100.0%). Three participants with the m.1555A>G variant were identified, all of whom avoided aminoglycoside antibiotics. Overall, 424 infants (80.6%) receiving antibiotics were successfully tested for the variant, and the mean time to antibiotics was equivalent to previous practice. Conclusions and Relevance: The MT-RNR1 POCT was integrated without disrupting normal clinical practice, and genotype was used to guide antibiotic prescription and avoid AIO. This approach identified the m.1555A>G variant in a practice-changing time frame, and wide adoption could significantly reduce the burden of AIO.


Subject(s)
Aminoglycosides , Ototoxicity , Aminoglycosides/adverse effects , Anti-Bacterial Agents/adverse effects , Genotype , Humans , Infant , Infant, Newborn , Intensive Care, Neonatal , Point-of-Care Systems , Prospective Studies
10.
Clin Genet ; 101(2): 255-259, 2022 02.
Article in English | MEDLINE | ID: mdl-34713892

ABSTRACT

The developmental disorder Burn-McKeown Syndrome (BMKS) is characterised by choanal atresia and specific craniofacial features. BMKS is caused by biallelic variants in the pre-messenger RNA splicing factor TXNL4A. Most patients have a loss-of-function variant in trans with a 34-base pair (bp) deletion (type 1 Δ34) in the promoter region. Here, we identified two patients with BMKS. One individual has a TXNL4A c.93_94delCC, p.His32Argfs *21 variant combined with a type 1 Δ34 promoter deletion. The other has an intronic TXNL4A splice site variant (c.258-3C>G) and a type 1 Δ34 promoter deletion. We show the c.258-3C>G variant and a previously reported c.258-2A>G variant, cause skipping of the final exon of TXNL4A in a minigene splicing assay. Furthermore, we identify putative transcription factor binding sites within the 56 bp of the TXNL4A promoter affected by the type 1 and type 2 Δ34 and use dual luciferase assays to identify a 22 bp repeated motif essential for TXNL4A expression within this promoter region. We propose that additional variants affecting critical transcription factor binding nucleotides within the 22 bp repeated motif could be relevant to BMKS aetiology. Finally, our data emphasises the need to analyse the non-coding sequence in individuals where a single likely pathogenic coding variant is identified in an autosomal recessive disorder consistent with the clinical presentation.


Subject(s)
Choanal Atresia/diagnosis , Choanal Atresia/genetics , Deafness/congenital , Genotype , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Mutation , Ribonucleoprotein, U5 Small Nuclear/genetics , Alleles , Binding Sites , Deafness/diagnosis , Deafness/genetics , Facies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Pedigree , Phenotype , Promoter Regions, Genetic , Protein Binding , RNA Splicing , Ribonucleoprotein, U5 Small Nuclear/metabolism , Transcription Factors/metabolism
11.
Clin Genet ; 101(1): 127-133, 2022 01.
Article in English | MEDLINE | ID: mdl-34612517

ABSTRACT

Only two families have been reported with biallelic TMEM260 variants segregating with structural heart defects and renal anomalies syndrome (SHDRA). With a combination of genome, exome sequencing and RNA studies, we identified eight individuals from five families with biallelic TMEM260 variants. Variants included one multi-exon deletion, four nonsense/frameshifts, two splicing changes and one missense change. Together with the published cases, analysis of clinical data revealed ventricular septal defects (12/12), mostly secondary to truncus arteriosus (10/12), elevated creatinine levels (6/12), horse-shoe kidneys (1/12) and renal cysts (1/12) in patients. Three pregnancies were terminated on detection of severe congenital anomalies. Six patients died between the ages of 6 weeks and 5 years. Using a range of stringencies, carrier frequency for SHDRA was estimated at 0.0007-0.007 across ancestries. In conclusion, this study confirms the genetic basis of SHDRA, expands its known mutational spectrum and clarifies its clinical features. We demonstrate that SHDRA is a severe condition associated with substantial mortality in early childhood and characterised by congenital cardiac malformations with a variable renal phenotype.


Subject(s)
Alleles , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Kidney Diseases/diagnosis , Kidney Diseases/genetics , Membrane Proteins/genetics , Truncus Arteriosus/abnormalities , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Amino Acid Substitution , Family , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Heterozygote , Humans , Phenotype
12.
Sci Rep ; 11(1): 20607, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663891

ABSTRACT

The development of computational methods to assess pathogenicity of pre-messenger RNA splicing variants is critical for diagnosis of human disease. We assessed the capability of eight algorithms, and a consensus approach, to prioritize 249 variants of uncertain significance (VUSs) that underwent splicing functional analyses. The capability of algorithms to differentiate VUSs away from the immediate splice site as being 'pathogenic' or 'benign' is likely to have substantial impact on diagnostic testing. We show that SpliceAI is the best single strategy in this regard, but that combined usage of tools using a weighted approach can increase accuracy further. We incorporated prioritization strategies alongside diagnostic testing for rare disorders. We show that 15% of 2783 referred individuals carry rare variants expected to impact splicing that were not initially identified as 'pathogenic' or 'likely pathogenic'; one in five of these cases could lead to new or refined diagnoses.


Subject(s)
Computational Biology/methods , Disease/genetics , RNA Splicing/genetics , Algorithms , Databases, Genetic , Diagnosis , Diagnosis, Differential , Diagnostic Techniques and Procedures , Exons/genetics , Genetic Variation/genetics , Genomics/methods , Humans , Mutation/genetics , RNA Precursors/genetics , RNA Splice Sites/genetics
13.
Am J Hum Genet ; 108(11): 2195-2204, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34715011

ABSTRACT

Human mitochondrial RNase P (mt-RNase P) is responsible for 5' end processing of mitochondrial precursor tRNAs, a vital step in mitochondrial RNA maturation, and is comprised of three protein subunits: TRMT10C, SDR5C1 (HSD10), and PRORP. Pathogenic variants in TRMT10C and SDR5C1 are associated with distinct recessive or x-linked infantile onset disorders, resulting from defects in mitochondrial RNA processing. We report four unrelated families with multisystem disease associated with bi-allelic variants in PRORP, the metallonuclease subunit of mt-RNase P. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. Fibroblasts from affected individuals in two families demonstrated decreased steady state levels of PRORP, an accumulation of unprocessed mitochondrial transcripts, and decreased steady state levels of mitochondrial-encoded proteins, which were rescued by introduction of the wild-type PRORP cDNA. In mt-tRNA processing assays performed with recombinant mt-RNase P proteins, the disease-associated variants resulted in diminished mitochondrial tRNA processing. Identification of disease-causing variants in PRORP indicates that pathogenic variants in all three subunits of mt-RNase P can cause mitochondrial dysfunction, each with distinct pleiotropic clinical presentations.


Subject(s)
Alleles , Genetic Pleiotropy , Mitochondria/enzymology , RNA, Mitochondrial/genetics , RNA, Transfer/genetics , Ribonuclease P/genetics , Adult , Female , Humans , Male , Pedigree
14.
Reprod Biomed Online ; 43(5): 899-902, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34497033

ABSTRACT

RESEARCH QUESTION: Does a genetic condition underlie the diagnosis of primary ovarian insufficiency (POI) in a 21-year-old woman with primary amenorrhoea? DESIGN: A karyotype and genetic testing for Fragile X syndrome was undertaken. A next-generation sequencing panel of 24 genes associated with syndromal and non-syndromal POI was conducted. RESULTS: A nonsense variant c.1336G>T, p.(Glu446Ter) and whole gene deletion in STAG3 were identified. CONCLUSIONS: Biallelic loss of function variants in STAG3 are associated with primary ovarian failure type 8 and are a rare cause of POI.


Subject(s)
Cell Cycle Proteins/genetics , Mutation , Primary Ovarian Insufficiency/genetics , Amenorrhea/genetics , Codon, Nonsense/genetics , Female , Gene Deletion , High-Throughput Nucleotide Sequencing , Humans , Karyotyping , Pedigree , Puberty/genetics , Young Adult
15.
Genes (Basel) ; 12(8)2021 07 28.
Article in English | MEDLINE | ID: mdl-34440323

ABSTRACT

The bladder exstrophy-epispadias complex (BEEC) is an abdominal midline malformation comprising a spectrum of congenital genitourinary abnormalities of the abdominal wall, pelvis, urinary tract, genitalia, anus, and spine. The vast majority of BEEC cases are classified as non-syndromic and the etiology of this malformation is still unknown. This review presents the current knowledge on this multifactorial disorder, including phenotypic and anatomical characterization, epidemiology, proposed developmental mechanisms, existing animal models, and implicated genetic and environmental components.


Subject(s)
Bladder Exstrophy/genetics , Epispadias/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male
17.
Front Cell Dev Biol ; 8: 567, 2020.
Article in English | MEDLINE | ID: mdl-32850778

ABSTRACT

Previous studies in developing Xenopus and zebrafish reported that the phosphate transporter slc20a1a is expressed in pronephric kidneys. The recent identification of SLC20A1 as a monoallelic candidate gene for cloacal exstrophy further suggests its involvement in the urinary tract and urorectal development. However, little is known of the functional role of SLC20A1 in urinary tract development. Here, we investigated this using morpholino oligonucleotide knockdown of the zebrafish ortholog slc20a1a. This caused kidney cysts and malformations of the cloaca. Moreover, in morphants we demonstrated dysfunctional voiding and hindgut opening defects mimicking imperforate anus in human cloacal exstrophy. Furthermore, we performed immunohistochemistry of an unaffected 6-week-old human embryo and detected SLC20A1 in the urinary tract and the abdominal midline, structures implicated in the pathogenesis of cloacal exstrophy. Additionally, we resequenced SLC20A1 in 690 individuals with bladder exstrophy-epispadias complex (BEEC) including 84 individuals with cloacal exstrophy. We identified two additional monoallelic de novo variants. One was identified in a case-parent trio with classic bladder exstrophy, and one additional novel de novo variant was detected in an affected mother who transmitted this variant to her affected son. To study the potential cellular impact of SLC20A1 variants, we expressed them in HEK293 cells. Here, phosphate transport was not compromised, suggesting that it is not a disease mechanism. However, there was a tendency for lower levels of cleaved caspase-3, perhaps implicating apoptosis pathways in the disease. Our results suggest SLC20A1 is involved in urinary tract and urorectal development and implicate SLC20A1 as a disease-gene for BEEC.

18.
J Allergy Clin Immunol Pract ; 8(10): 3549-3556, 2020.
Article in English | MEDLINE | ID: mdl-32553831

ABSTRACT

BACKGROUND: Hereditary alpha-tryptasemia (HAT) is a genetic trait caused by an increased alpha-tryptase tryptase alpha/beta 1 gene copy number. Basal serum mast cell tryptase (MCT) level is typically greater than or equal to 8.0 ng/mL. OBJECTIVES: To study the clinical disease spectrum of HAT and determine its UK prevalence. METHODS: Droplet digital PCR was used to determine tryptase alpha/beta 1 copy number in 432 DNA samples from an unselected UK birth cohort and in 70 patients referred with a basal MCT level greater than 8 ng/mL. Baseline MCT concentrations and clinical presentation were also assessed in 4283 samples sent to a regional immunology laboratory. RESULTS: Duplication in alpha copy number was present in 5% of the unselected British birth cohort, with all affected individuals having a basal MCT level of greater than or equal to 8.0 ng/mL. Basal MCT levels of greater than or equal to 8.0 ng/mL were also found in 5% of the 4283 individuals referred for MCT testing because of clinical symptoms. In 70 patients confirmed to have HAT (79% with a duplication; 21% with a higher alpha gene copy number), urticaria/angioedema (51%), skin flushing (41%), food intolerances (39%), and altered bowel habits (36%) were common presenting complaints. However, clinical manifestations were not more common in patients with gene triplications or quintuplications than in those with duplications. Some immediate family members with the same genetic trait and high basal MCT levels were asymptomatic. CONCLUSIONS: Five percent of people in the United Kingdom may have HAT. The diagnosis should be considered when basal MCT level is greater than or equal to 8 ng/mL. HAT has variable clinical penetrance. It may modify the expression of multifactorial allergic diseases rather than directly cause specific phenotypes.


Subject(s)
Hypersensitivity , Mast Cells , Humans , Phenotype , Prevalence , Tryptases/genetics , United Kingdom/epidemiology
19.
Eur J Med Genet ; 63(9): 103974, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32534991

ABSTRACT

Ligase IV (LIG4) syndrome is a rare disorder of DNA damage repair caused by biallelic, pathogenic variants in LIG4. This is a phenotypically heterogeneous condition with clinical presentation varying from lymphoreticular malignancies in developmentally normal individuals to significant microcephaly, primordial dwarfism, radiation hypersensitivity, severe combined immunodeficiency and early mortality. Renal defects have only rarely been described as part of the ligase IV disease spectrum. We identified a consanguineous family where three siblings presenting with antenatal growth retardation, microcephaly, severe renal anomalies and skeletal abnormalities, including radial ray defects. Autozygosity mapping and exome sequencing identified a novel homozygous frameshift variant in LIG4, c.597_600delTCAG, p.(Gln200LysfsTer33), which segregated in the family. LIG4 is encoded by a single exon and so this frameshift variant is predicted to result in a protein truncated by 678 amino acids. This is the shortest predicted LIG4 protein product reported and correlates with the most severe clinical phenotype described to date. We note the clinical overlap with Fanconi anemia and suggest that LIG4 syndrome is considered in the differential diagnosis of this severe developmental disorder.


Subject(s)
Craniofacial Abnormalities/genetics , DNA Ligase ATP/genetics , Fanconi Anemia/genetics , Growth Disorders/genetics , Immunologic Deficiency Syndromes/genetics , Microcephaly/genetics , Multicystic Dysplastic Kidney/genetics , Phenotype , Radius/abnormalities , Adult , Consanguinity , Craniofacial Abnormalities/pathology , Fanconi Anemia/pathology , Female , Fetus/abnormalities , Frameshift Mutation , Growth Disorders/pathology , Humans , Immunologic Deficiency Syndromes/pathology , Infant, Newborn , Male , Microcephaly/pathology , Multicystic Dysplastic Kidney/pathology , Pregnancy , Radius/embryology
20.
J Clin Invest ; 129(12): 5374-5380, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31513549

ABSTRACT

Myocardin (MYOCD) is the founding member of a class of transcriptional coactivators that bind the serum-response factor to activate gene expression programs critical in smooth muscle (SM) and cardiac muscle development. Insights into the molecular functions of MYOCD have been obtained from cell culture studies, and to date, knowledge about in vivo roles of MYOCD comes exclusively from experimental animals. Here, we defined an often lethal congenital human disease associated with inheritance of pathogenic MYOCD variants. This disease manifested as a massively dilated urinary bladder, or megabladder, with disrupted SM in its wall. We provided evidence that monoallelic loss-of-function variants in MYOCD caused congenital megabladder in males only, whereas biallelic variants were associated with disease in both sexes, with a phenotype additionally involving the cardiovascular system. These results were supported by cosegregation of MYOCD variants with the phenotype in 4 unrelated families by in vitro transactivation studies in which pathogenic variants resulted in abrogated SM gene expression and by the finding of megabladder in 2 distinct mouse models with reduced Myocd activity. In conclusion, we have demonstrated that variants in MYOCD result in human disease, and the collective findings highlight a vital role for MYOCD in mammalian organogenesis.


Subject(s)
Mutation , Nuclear Proteins/genetics , Trans-Activators/genetics , Urinary Bladder/abnormalities , Adult , Animals , Female , Genetic Variation , Humans , Male , Mice , Muscle, Smooth/metabolism , Nuclear Proteins/physiology , Trans-Activators/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...