Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Autism Dev Disord ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37140745

ABSTRACT

PURPOSE: Processing real-world sounds requires acoustic and higher-order semantic information. We tested the theory that individuals with autism spectrum disorder (ASD) show enhanced processing of acoustic features and impaired processing of semantic information. METHODS: We used a change deafness task that required detection of speech and non-speech auditory objects being replaced and a speech-in-noise task using spoken sentences that must be comprehended in the presence of background speech to examine the extent to which 7-15 year old children with ASD (n = 27) rely on acoustic and semantic information, compared to age-matched (n = 27) and IQ-matched (n = 27) groups of typically developing (TD) children. Within a larger group of 7-15 year old TD children (n = 105) we correlated IQ, ASD symptoms, and the use of acoustic and semantic information. RESULTS: Children with ASD performed worse overall at the change deafness task relative to the age-matched TD controls, but they did not differ from IQ-matched controls. All groups utilized acoustic and semantic information similarly and displayed an attentional bias towards changes that involved the human voice. Similarly, for the speech-in-noise task, age-matched-but not IQ-matched-TD controls performed better overall than the ASD group. However, all groups used semantic context to a similar degree. Among TD children, neither IQ nor the presence of ASD symptoms predict the use of acoustic or semantic information. CONCLUSION: Children with and without ASD used acoustic and semantic information similarly during auditory change deafness and speech-in-noise tasks.

2.
Autism Res ; 13(12): 2177-2189, 2020 12.
Article in English | MEDLINE | ID: mdl-32830457

ABSTRACT

Impairments in visuomotor integration (VMI) may contribute to anomalous development of motor, as well as social-communicative, skills in children with autism spectrum disorder (ASD). However, it is relatively unknown whether VMI impairments are specific to children with ASD versus children with other neurodevelopmental disorders. As such, this study addressed the hypothesis that children with ASD, but not those in other clinical control groups, would show greater deficits in high-VMI dynamic grip-force tracking versus low-VMI static presentation. Seventy-nine children, aged 7-17 years, participated: 22 children with ASD, 17 children with fetal alcohol spectrum disorder (FASD), 18 children with Attention-Deficit Hyperactivity Disorder (ADHD), and 22 typically developing (TD) children. Two grip-force tracking conditions were examined: (1) a low-VMI condition (static visual target) and (2) a high-VMI condition (dynamic visual target). Low-frequency force oscillations <0.5 Hz during the visuomotor task were also examined. Two-way ANCOVAs were used to examine group x VMI and group x frequency effects (α = 0.05). Children with ASD showed a difficulty, above that seen in the ADHD/FASD groups, tracking dynamic, but not static, visual stimuli as compared to TD children. Low-frequency force oscillations <0.25 Hz were also significantly greater in the ASD versus the TD group. This study is the first to report VMI deficits during dynamic versus static grip-force tracking and increased proportion of force oscillations <0.25 Hz during visuomotor tracking in the ASD versus TD group. Dynamic VMI impairments may be a core psychophysiologic feature that could contribute to impaired development of motor and social-communicative skills in ASD. LAY SUMMARY: Children with autism spectrum disorder (ASD) show difficulties using dynamic visual stimuli to guide their own movements compared to their typically developing (TD) peers. It is unknown whether children without a diagnosis of ASD, but with other neurological disorders, show similar difficulties processing dynamic visual stimuli. In this study, we showed that children with ASD show a difficulty using dynamic, but not static, visual stimuli to guide movement that may explain atypical development of motor and social skills.


Subject(s)
Autism Spectrum Disorder , Adolescent , Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder/complications , Child , Communication , Hand Strength , Humans , Social Skills
SELECTION OF CITATIONS
SEARCH DETAIL