Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 57(5): 595-598, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33338086

ABSTRACT

We report two anionic diphosphametallocenates, [K(2.2.2-crypt)][M(PC4Me4)2] (M = Cr, 2-Cr; Fe, 2-Fe). Both are low-spin (S = ½) by EPR spectroscopy and SQUID magnetometry. This contrasts the high-spin (S = 3/2) ferrocenate, [K(2.2.2-crypt)][Fe(C5H2-1,2,4-tBu)2] (4-Fe). Quantum chemical calculations suggest this is due to significant differences in ligand field splitting of the d-orbitals which also explain structural features in the 2-M complexes.

2.
Medchemcomm ; 3(1): 14-21, 2012.
Article in English | MEDLINE | ID: mdl-23293738

ABSTRACT

Chromatin remodelling enzymes such as the histone deacetylases (HDACs) and histone demethylases such as lysine-specific demethylase 1 (LSD1) have been validated as targets for cancer drug discovery. Although a number of HDAC inhibitors have been marketed or are in human clinical trials, the search for isoform-specific HDAC inhibitors is an ongoing effort. In addition, the discovery and development of compounds targeting histone demethylases are in their early stages. Epigenetic modulators used in combination with traditional antitumor agents such as 5-azacytidine represent an exciting new approach to cancer chemotherapy. We have developed multiple series of HDAC inhibitors and LSD1 inhibitors that promote the re-expression of aberrantly silenced genes that are important in human cancer. The design, synthesis and biological activity of these analogues is described herein.

3.
J Med Chem ; 54(19): 6624-33, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-21882831

ABSTRACT

A series of alkylated (bis)urea and (bis)thiourea polyamine analogues were synthesized and screened for antimalarial activity against chloroquine-sensitive and -resistant strains of Plasmodium falciparum in vitro. All analogues showed growth inhibitory activity against P. falciparum at less than 3 µM, with the majority having effective IC(50) values in the 100-650 nM range. Analogues arrested parasitic growth within 24 h of exposure due to a block in nuclear division and therefore asexual development. Moreover, this effect appears to be cytotoxic and highly selective to malaria parasites (>7000-fold lower IC(50) against P. falciparum) and is not reversible by the exogenous addition of polyamines. With this first report of potent antimalarial activity of polyamine analogues containing 3-7-3 or 3-6-3 carbon backbones and substituted terminal urea- or thiourea moieties, we propose that these compounds represent a structurally novel class of antimalarial agents.


Subject(s)
Antimalarials/chemical synthesis , Polyamines/chemical synthesis , Urea/analogs & derivatives , Urea/chemical synthesis , Antimalarials/pharmacology , Cell Line, Tumor , Chloroquine/pharmacology , DNA Replication/drug effects , DNA, Protozoan/metabolism , Drug Resistance , Humans , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Polyamines/pharmacology , Structure-Activity Relationship , Thiourea/analogs & derivatives , Thiourea/chemical synthesis , Thiourea/pharmacology , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL