Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Acta Biomater ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38750917

ABSTRACT

Skin denervation has been shown to cause remission of psoriatic lesions in patients, which can reappear if reinnervation occurs. This effect can be induced by the activation of dendritic cells through sensory innervation. However, a direct effect of nerves on the proliferation of keratinocytes involved in the formation of psoriatic plaques has not been investigated. We developed, by tissue engineering, a model of psoriatic skin made of patient skin cells that showed increased keratinocyte proliferation and epidermal thickness compared to healthy controls. When this model was treated with CGRP, a neuropeptide released by sensory neurons, an increased keratinocyte proliferation was observed in the psoriatic skin model, but not in the control. When a sensory nerve network was incorporated in the psoriatic model and treated with capsaicin to induce neuropeptide release, an increase of keratinocyte proliferation was confirmed, which was blocked by a CGRP antagonist while no difference was noticed in the innervated healthy control. We showed that sensory neurons can participate directly to keratinocyte hyperproliferation in the formation of psoriatic lesions through the release of CGRP, independently of the immune system. Our unique tissue-engineered innervated psoriatic skin model could be a valuable tool to better understand the mechanism by which nerves may modulate psoriatic lesion formation in humans. STATEMENT OF SIGNIFICANCE: This study shows that keratinocytes extracted from patients' psoriatic skin retain, at least in part, the disease phenotype. Indeed, when combined in a 3D model of tissue-engineered psoriatic skin, keratinocytes exhibited a higher proliferation rate, and produced a thicker epidermis than a healthy skin control. In addition, their hyperproliferation was aggravated by a treatment with CGRP, a neuropeptide released by sensory nerves. In a innervated model of tissue-engineered psoriatic skin, an increase in keratinocyte hyperproliferation was also observed after inducing neurons to release neuropeptides. This effect was prevented by concomitant treatment with an antagonist to CGRP. Thus, this study shows that sensory nerves can directly participate to affect keratinocyte hyperproliferation in psoriasis through CGRP release.

2.
Stem Cells Int ; 2023: 1496597, 2023.
Article in English | MEDLINE | ID: mdl-37096129

ABSTRACT

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease mainly characterized by spasticity in the lower limbs and poor muscle control. The disease is caused by mutations in the SACS gene leading in most cases to a loss of function of the sacsin protein, which is highly expressed in motor neurons and Purkinje cells. To investigate the impact of the mutated sacsin protein in these cells in vitro, induced pluripotent stem cell- (iPSC-) derived motor neurons and iPSC-derived Purkinje cells were generated from three ARSACS patients. Both types of iPSC-derived neurons expressed the characteristic neuronal markers ß3-tubulin, neurofilaments M and H, as well as specific markers like Islet-1 for motor neurons, and parvalbumin or calbindin for Purkinje cells. Compared to controls, iPSC-derived mutated SACS neurons expressed lower amounts of sacsin. In addition, characteristic neurofilament aggregates were detected along the neurites of both iPSC-derived neurons. These results indicate that it is possible to recapitulate in vitro, at least in part, the ARSACS pathological signature in vitro using patient-derived motor neurons and Purkinje cells differentiated from iPSCs. Such an in vitro personalized model of the disease could be useful for the screening of new drugs for the treatment of ARSACS.

3.
Tissue Eng Part C Methods ; 29(4): 134-143, 2023 04.
Article in English | MEDLINE | ID: mdl-36792923

ABSTRACT

In the peripheral nervous system, Schwann cells (SCs) play a crucial role in axonal growth, metabolic support of neurons, and the production of myelin sheaths. Expansion of SCs after extraction from human or animal nerves is a long and often low-yielding process. We established a rapid cell culture method using a defined serum-free medium to differentiate human induced pluripotent stem cells (iPSCs) into SCs in only 21 days. The SC identity was characterized by expression of SRY-Box Transcription factor 10 (SOX10), S100b, glial fibrillary acidic protein (GFAP), P75, growth-associated protein 43 (GAP43), and early growth response 2 (EGR2) markers. The SC purity reached 87% as assessed by flow cytometry using the specific SOX10 marker, and 69% based on S100b expression. When SCs were cocultured with iPSC-derived motor neurons two-dimensionally or three-dimensionally (3D), they also expressed the markers of myelin MBP, MPZ, and gliomedin. Likewise, when they were seeded on the opposite side of a porous collagen sponge from motor neurons in the 3D model, they were able to migrate through it and colocalize with motor axons after 8 weeks of maturation. Moreover, they were shown by transmission electron microscopy to form myelin sheaths around motor axons. These results suggest that the use of autologous iPSC-derived SCs for clinical applications such as the repair of peripheral nerve damage, the treatment of spinal cord injuries, or for demyelinating diseases could be a valuable option. Impact Statement Peripheral nerve injuries can cause the complete paralysis of the upper or lower limbs, which considerably reduces the quality of life of patients. To repair this injury, many approaches have been developed by tissue engineering. Combining biomaterials with Schwann cells (SCs) has been shown to be an effective solution for stimulating nerve regeneration. However, the challenge faced concerns the strategy for obtaining autologous SCs to treat patients. A promising approach is to differentiate them from the patient's own cells, previously induced into pluripotent stem cells. We propose a fast culture method to generate functional SCs differentiated from induced pluripotent stem cells.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Humans , Quality of Life , Schwann Cells , Myelin Sheath/metabolism , Cell Differentiation , Nerve Regeneration/physiology , Cells, Cultured
4.
Biotechnol Bioeng ; 119(7): 1938-1948, 2022 07.
Article in English | MEDLINE | ID: mdl-35289393

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease affecting upper and lower motor neurons (MNs). To investigate whether Schwann cells could be involved in the disease pathogenesis, we developed a tissue-engineered three-dimensional (3D) in vitro model that combined MNs cocultured with astrocytes and microglia seeded on top of a collagen sponge populated with epineurium fibroblasts to enable 3D axonal migration. C2C12 myoblasts were seeded underneath the sponge in the presence or absence of Schwann cells. To reproduce an ALS cellular microenvironment, MNs, astrocytes, and microglia were extracted from SOD1G93A mice recapitulating many aspects of the human disease. This 3D ALS in vitro model was compared with a 3D control made of cells isolated from SOD1WT mice. We showed that normal Schwann cells strongly enhanced MN axonal migration in the 3D control model but had no effect in the ALS model. However, ALS-derived Schwann cells isolated from SOD1G93A mice failed to significantly improve axonal migration in both models. These results suggest that a cell therapy using healthy Schwann cells may not be effective in promoting axonal regeneration in ALS. In addition, this 3D ALS model could be used to study the impact of other cell types on ALS by various combinations of normal and diseased cells.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Disease Models, Animal , Mice , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Schwann Cells/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
5.
Acta Biomater ; 82: 93-101, 2018 12.
Article in English | MEDLINE | ID: mdl-30316025

ABSTRACT

Cutaneous innervation is increasingly recognized as a major element of skin physiopathology through the neurogenic inflammation driven by neuropeptides that are sensed by endothelial cells and the immune system. To investigate this process in vitro, models of innervated tissue-engineered skin (TES) were developed, yet exclusively with murine sensory neurons extracted from dorsal root ganglions. In order to build a fully human model of innervated TES, we used induced pluripotent stem cells (iPSC) generated from human skin fibroblasts. Nearly 100% of the iPSC differentiated into sensory neurons were shown to express the neuronal markers BRN3A and ß3-tubulin after 19 days of maturation. In addition, these cells were also positive to TRPV1 and neurofilament M, and some of them expressed Substance P, TrkA and TRPA1. When stimulated with molecules inducing neuropeptide release, iPSC-derived neurons released Substance P and CGRP, both in conventional monolayer culture and after seeding in a 3D fibroblast-populated collagen sponge model. Schwann cells, the essential partners of neurons for function and axonal migration, were also successfully differentiated from human iPSC as shown by their expression of the markers S100, GFAP, p75 and SOX10. When cultured for one additional month in the TES model, iPSC-derived neurons seeded at the bottom of the sponge formed a network of neurites spanning the whole TES up to the epidermis, but only when combined with mouse or iPSC-derived Schwann cells. This unique model of human innervated TES should be highly useful for the study of cutaneous neuroinflammation. STATEMENT OF SIGNIFICANCE: The purpose of this work was to develop in vitro an innovative fully human tissue-engineered skin enabling the investigation of the influence of cutaneous innervation on skin pathophysiology. To reach that aim, neurons were differentiated from human induced pluripotent stem cells (iPSCs) generated from normal human skin fibroblasts. This innervated tissue-engineered skin model will be the first one to show iPSC-derived neurons can be successfully used to build a 3D nerve network in vitro. Since innervation has been recently recognized to play a central role in many human skin diseases, such as psoriasis and atopic dermatitis, this construct promises to be at the forefront to model these diseases while using patient-derived cells.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Models, Biological , Schwann Cells/metabolism , Sensory Receptor Cells/metabolism , Skin/innervation , Skin/metabolism , Tissue Engineering , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Schwann Cells/cytology , Sensory Receptor Cells/cytology , Skin/cytology
6.
Sci Rep ; 5: 16763, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26577180

ABSTRACT

Extraction of mouse spinal motor neurons from transgenic mouse embryos recapitulating some aspects of neurodegenerative diseases like amyotrophic lateral sclerosis has met with limited success. Furthermore, extraction and long-term culture of adult mouse spinal motor neurons and glia remain also challenging. We present here a protocol designed to extract and purify high yields of motor neurons and glia from individual spinal cords collected on embryos and adult (5-month-old) normal or transgenic mice. This method is based on mild digestion of tissue followed by gradient density separation allowing to obtain two millions motor neurons over 92% pure from one E14.5 single embryo and more than 30,000 from an adult mouse. These cells can be cultured more than 14 days in vitro at a density of 100,000 cells/cm(2) to maintain optimal viability. Functional astrocytes and microglia and small gamma motor neurons can be purified at the same time. This protocol will be a powerful and reliable method to obtain motor neurons and glia to better understand mechanisms underlying spinal cord diseases.


Subject(s)
Astrocytes/cytology , Embryo, Mammalian/cytology , Microglia/cytology , Motor Neurons/cytology , Spinal Cord/cytology , Animals , Astrocytes/metabolism , Biomarkers , Cell Separation , Cell Survival , Cells, Cultured , Embryo, Mammalian/metabolism , Gene Expression , Mice , Mice, Transgenic , Microglia/metabolism , Motor Neurons/metabolism , Phenotype , Spinal Cord/metabolism
7.
J Pathol ; 224(2): 222-33, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21462187

ABSTRACT

Matrix metalloproteinase 2 (MMP2) is an extracellular protein-degrading enzyme widely believed to be involved in the invasion of brain tumour cells. However, this assumption is mainly based on in vitro studies. By characterizing the transcriptome and in vivo properties of 20 astrocytoma cell lines, we found that the levels of MMP2 were higher in GFAP(-) astrocytoma cells and correlated with their ability to induce vascular changes, a common complication of malignant tumours. To study the relationship between MMP2 expression and vascular alteration, we intracerebrally implanted immunodeficient mice with human astrocytoma cells stably transduced with lentiviral vectors expressing either MMP2 or a short hairpin RNA against MMP2. We found that the tumours depleted of MMP2 were larger, contained more proliferating cells and fewer macrophages, and had a vasculature that was more destabilized and regressed with fewer capillary sprouts. In contrast, the tumours overexpressing MMP2 were smaller and showed no histological difference compared to the controls. We therefore suggest that MMP2 is not the cause of vascular atypia in malignant brain tumours, but is involved in a tissue repair response that tends to limit the growth of these tumours. This study argues against MMP2 inhibition as a therapeutic approach for brain cancer and provides a comprehensive characterization of popular astrocytoma cell lines that should help to identify alternative targets.


Subject(s)
Astrocytoma/pathology , Brain Neoplasms/pathology , Macrophages/pathology , Matrix Metalloproteinase 2/physiology , Neovascularization, Pathologic/pathology , Animals , Astrocytoma/blood supply , Astrocytoma/enzymology , Brain Neoplasms/blood supply , Brain Neoplasms/enzymology , Gene Knockdown Techniques , Genetic Vectors , Humans , Lentivirus/genetics , Male , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Mice , Mice, SCID , Neoplasm Transplantation , Neovascularization, Pathologic/enzymology , Transplantation, Heterologous , Tumor Cells, Cultured
8.
J Neurooncol ; 99(1): 1-11, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20020177

ABSTRACT

Malignant brain tumors grow by coopting the existing vasculature, a process involving the release of angiopoietin-2 (Angpt2) from endothelial cells and its binding to the Tie2 receptor. The first goal of this study was to examine the therapeutic potential of two proteins that could interfere with Angpt2, namely Angpt3 and the soluble extracellular domain of Tie2 (sTie2). The second goal was to develop a lentiviral vector capable of delivering such proteins while offering the possibility to identify and destroy the genetically modified cells. To this end, we designed a bicistronic construct expressing the marker enhanced green fluorescent protein fused to the suicide gene herpes simplex virus 1 thymidine kinase. GL261 glioma cells transduced with this vector could be tracked and killed on command by the administration of the prodrug ganciclovir, either in vitro or after implantation into mouse brains. High levels of Angpt3 or sTie2 could be achieved with this vector; however, Angpt3 increased capillary destabilization and glioma growth, whereas sTie2 exerted no effect. Overall, this study helps to understand the importance of the Tie2 signaling pathway in glioma development and the role of Angpt3, but suggests that neither this molecule nor sTie2 are effective agents against malignant gliomas. This study also provides a lentiviral vector design for safer gene therapy.


Subject(s)
Angiopoietins/metabolism , Antiviral Agents/therapeutic use , Ganciclovir/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Glioma/drug therapy , Receptor, TIE-2/metabolism , Analysis of Variance , Angiopoietin-Like Protein 1 , Angiopoietin-like Proteins , Angiopoietins/genetics , Animals , Antiviral Agents/pharmacology , Bromodeoxyuridine/metabolism , Cell Growth Processes/drug effects , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Ganciclovir/pharmacology , Gene Expression Regulation, Neoplastic/genetics , Genetic Vectors/therapeutic use , Glioma/diagnosis , Glioma/genetics , Glioma/mortality , Green Fluorescent Proteins/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Receptor, TIE-2/genetics , Transduction, Genetic/methods , Transfection/methods
9.
Brain Pathol ; 18(3): 401-14, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18371178

ABSTRACT

All patients with glioblastoma, the most aggressive and common form of brain cancer, develop cerebral edema. This complication is routinely treated with dexamethasone, a steroidal anti-inflammatory drug whose effects on brain tumors are not fully understood. Here we show that dexamethasone can reduce glioma growth in mice, even though it depletes infiltrating T cells with potential antitumor activity. More precisely, T cells with helper or cytotoxic function were sensitive to dexamethasone, but not those that were negative for the CD4 and CD8 molecules, including gammadelta and natural killer (NK) T cells. The antineoplastic effect of dexamethasone was indirect, as it did not meaningfully affect the growth and gene expression profile of glioma cells in vitro. In contrast, hundreds of dexamethasone-modulated genes, notably angiopoietin 2 (Angpt2), were identified in cultured cerebral endothelial cells by microarray analysis. The ability of dexamethasone to attenuate Angpt2 expression was confirmed in vitro and in vivo. Selective neutralization of Angpt2 using a peptide-Fc fusion protein reduced glioma growth and vascular enlargement to a greater extent than dexamethasone, without affecting T cell infiltration. In conclusion, this study suggests a mechanism by which dexamethasone can slow glioma growth, providing a new therapeutic target for malignant brain tumors.


Subject(s)
Angiopoietin-2/antagonists & inhibitors , Anti-Inflammatory Agents/pharmacology , Brain Neoplasms/drug therapy , Dexamethasone/pharmacology , Glioma/drug therapy , Animals , Brain Neoplasms/blood supply , Brain Neoplasms/metabolism , Flow Cytometry , Gene Expression/drug effects , Glioma/blood supply , Glioma/metabolism , Immunohistochemistry , In Situ Hybridization , Male , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/metabolism , Oligonucleotide Array Sequence Analysis , Recombinant Fusion Proteins/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/drug effects
10.
Biochem J ; 388(Pt 2): 407-18, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15656786

ABSTRACT

A 163 bp enhancer in the CYP2B2 5' flank confers PB (phenobarbital) inducibility and constitutes a PBRU (PB response unit). The PBRU contains several transcription factor binding sites, including NR1, NR2 and NR3, which are direct repeats separated by 4 bp of the nuclear receptor consensus half-site AGGTCA, as well as an ER (everted repeat) separated by 7 bp (ER-7). Constitutive androstane receptor (CAR)-RXR (retinoic X receptor) heterodimers are known to bind to NR1, NR2 and NR3. Electrophoretic mobility-shift analysis using nuclear extracts from livers of untreated or PB-treated rats revealed binding of several other proteins to different PBRU elements. Using supershift analysis and in vitro coupled transcription and translation, the proteins present in four retarded complexes were identified as TRbeta (thyroid hormone receptor beta), LXR (liver X receptor), HNF-4 (hepatocyte nuclear factor 4) and heterodimers of PBX-PREP1 (pre-B cell homoeobox-Pbx regulatory protein 1). LXR-RXR heterodimers bound to NR3 and TRbeta bound to NR3, NR1 and ER-7, whereas the PBX-PREP1 site is contained within NR2. The HNF-4 site overlaps with NR1. A mutation described previously, GRE1m1, which decreases PB responsiveness, increased the affinity of this site for HNF-4. The PBRU also contains a site for nuclear factor 1. The PBRU thus contains a plethora of transcription factor binding sites. The profiles of transcription factor binding to NR1 and NR3 were quite similar, although strikingly different from, and more complex than, that of NR2. This parallels the functional differences in conferring PB responsiveness between NR1 and NR3 on the one hand, and NR2 on the other.


Subject(s)
Aryl Hydrocarbon Hydroxylases/genetics , DNA-Binding Proteins/metabolism , Steroid Hydroxylases/genetics , Animals , Aryl Hydrocarbon Hydroxylases/chemistry , Aryl Hydrocarbon Hydroxylases/physiology , Base Sequence , Binding Sites , Cell Line, Tumor , Cell Nucleus/metabolism , Gene Expression Regulation , Hepatocyte Nuclear Factor 4 , Hepatocytes/metabolism , Homeodomain Proteins/metabolism , Humans , Liver X Receptors , Molecular Sequence Data , Mutagenesis, Site-Directed , Orphan Nuclear Receptors , Phenobarbital/pharmacology , Phosphoproteins/metabolism , Promoter Regions, Genetic , Rats , Receptors, Cytoplasmic and Nuclear/metabolism , Response Elements , Steroid Hydroxylases/chemistry , Steroid Hydroxylases/physiology , Thyroid Hormone Receptors beta/metabolism , Transcription Factors/metabolism
11.
Biochem Pharmacol ; 68(7): 1383-9, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15345328

ABSTRACT

A sequence critical for phenobarbital (PB) induction, the PB response unit (PBRU), situated upstream of the rat CYP2B1 and CYP2B2 genes, includes two nuclear receptor binding sites, NR1 and NR2. When NR1 and NR2 are mutated PB responsiveness is abolished. While no nuclear receptor for which PB is an agonist ligand has yet been identified, PB is a ligand of GABA(A) receptors and it can displace [(3)H] 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK 11195) from its binding site on the peripheral benzodiazepine receptor (PBR). We assessed CYP2B levels in primary rat hepatocytes following treatment with 10 ligands of either or both of these receptors. All compounds tested were found to be CYP2B1/CYP2B2 inducers and most were CYP3A inducers. Five had not previously been described as CYP2B1/CYP2B2 inducers: bicuculline, flunitrazepam, 4'-chlorodiazepam (Ro5-4864), N,N-dihexyl-2-(4-fluorophenyl)indole-3-acetamide (FGIN 1-27) and 7-(dimethylcarbamoyloxy)-6-phenylpyrrolo-[2,1-d][1,5]benzothiazepine (DCPPBT). Reporter gene analysis demonstrated that CYP2B induction by these agents and other PBR or GABA(A) receptor ligands is mediated through the PBRU and the NR1/NR2 sites, suggesting a molecular mechanism similar to that for PB induction. The potencies for PBRU-dependent induction by 11 ligands of PBR or the GABA(A) receptor was evaluated. FGIN-127, DCPPBT and PK 11195 exhibited EC(50) values for PBRU-dependent transcription activation about three orders of magnitude higher than the reported affinities of the PBR for these agents, arguing against the involvement of the PBR in PB induction. However the EC(50) values found for the agents tested encourage further investigation on the possible involvement of the GABA(A) receptor in PB induction.


Subject(s)
Aryl Hydrocarbon Hydroxylases/biosynthesis , GABA-A Receptor Agonists , Hepatocytes/drug effects , Oxidoreductases, N-Demethylating/biosynthesis , Phenobarbital/pharmacology , Steroid Hydroxylases/biosynthesis , Animals , Cytochrome P-450 CYP3A , Enzyme Induction/drug effects , GABA Agents/pharmacology , Hepatocytes/enzymology , Isoquinolines/pharmacology , Ligands , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...