Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Environ Sci Pollut Res Int ; 31(5): 6587-6596, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37966636

ABSTRACT

The adverse outcome pathway (AOP) has been conceptualized in 2010 as an analytical construct to describe a sequential chain of causal links between key events, from a molecular initiating event leading to an adverse outcome (AO), considering several levels of biological organization. An AOP aims to identify and organize available knowledge about toxic effects of chemicals and drugs, either in ecotoxicology or toxicology, and it can be helpful in both basic and applied research and serve as a decision-making tool in support of regulatory risk assessment. The AOP concept has evolved since its introduction, and recent research in toxicology, based on integrative systems biology and artificial intelligence, gave it a new dimension. This innovative in silico strategy can help to decipher mechanisms of action and AOP and offers new perspectives in AOP development. However, to date, this strategy has not yet been applied to ecotoxicology. In this context, the main objective of this short article is to discuss the relevance and feasibility of transferring this strategy to ecotoxicology. One of the challenges to be discussed is the level of organisation that is relevant to address for the AO (population/community). This strategy also offers many advantages that could be fruitful in ecotoxicology and overcome the lack of time, such as the rapid identification of data available at a time t, or the identification of "data gaps". Finally, this article proposes a step forward with suggested priority topics in ecotoxicology that could benefit from this strategy.


Subject(s)
Adverse Outcome Pathways , Ecotoxicology , Ecotoxicology/methods , Artificial Intelligence , Risk Assessment/methods
2.
Toxicol Appl Pharmacol ; 476: 116651, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37549741

ABSTRACT

Epidemiological studies have shown associations between prenatal exposure to lead (Pb) and neurodevelopmental effects in young children. Prenatal exposure is generally characterized by measuring the concentration in the umbilical cord at delivery or in the maternal blood during pregnancy. To assess internal Pb exposure during prenatal life, we developed a pregnancy physiologically based pharmacokinetic (p-PBPK) model that to simulates Pb levels in blood and target tissues in the fetus, especially during critical periods for brain development. An existing Pb PBPK model was adapted to pregnant women and fetuses. Using data from literature, both the additional maternal bone remodeling, that causes Pb release into the blood, and the Pb placental transfers were estimated by Bayesian inference. Additional maternal bone remodeling was estimated to start at 21.6 weeks. Placental transfers were estimated between 4.6 and 283 L.day-1 at delivery with high interindividual variability. Once calibrated, the p-PBPK model was used to simulate fetal exposure to Pb. Internal fetal exposure greatly varies over the pregnancy with two peaks of Pb levels in blood and brain at the end of the 1st and 3rd trimesters. Sensitivity analysis shows that the fetal blood lead levels are affected by the maternal burden of bone Pb via maternal bone remodeling and by fetal bone formation at different pregnancy stages. Coupling the p-PBPK model with an effect model such as an adverse outcome pathway could help to predict the effects on children's neurodevelopment.


Subject(s)
Lead , Prenatal Exposure Delayed Effects , Child , Humans , Pregnancy , Female , Child, Preschool , Lead/toxicity , Pregnant Women , Placenta/metabolism , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/metabolism , Toxicokinetics , Bayes Theorem , Bone and Bones/metabolism , Maternal-Fetal Exchange , Models, Biological
3.
Article in English | MEDLINE | ID: mdl-37436621

ABSTRACT

Due to the estrogenic behavior of bisphenol (BP) A, industries have developed many substitutes, such as BPS and BPF. However, due to their structural similarities, adverse effects on reproduction are currently observed in various organisms, including fish. Even if new results have shown impacts of these bisphenols on many other physiological functions, their mode of action remains unclear. In this context, we proposed to better understand the impact of BPA, BPS, and BPF on immune responses (leucocyte sub-populations, cell death, respiratory burst, lysosomal presence, and phagocytic activity) and on biomarkers of metabolic detoxification (ethoxyresorufin-O-deethylase, EROD, and glutathione S-transferase, GST) and oxidative stress (glutathione peroxidase, GPx, and lipid peroxidation with thiobarbituric acid reactive substance method, TBARS) in an adult sentinel fish species, the three-spined stickleback. In order to enhance our understanding of how biomarkers change over time, it is essential to determine the internal concentration responsible for the observed responses. Therefore, it is necessary to explore the toxicokinetics of bisphenols. Thus, sticklebacks were exposed either to 100 µg/L of BPA, BPF or BPS for 21 days, or for seven days to 10 and 100 µg/L of BPA or BPS followed by seven days of depuration. Although BPS has very different TK, due to its lower bioaccumulation compared to BPA and BPF, BPS affect oxidative stress and phagocytic activity in the same way. For those reasons, the replacement of BPA by any substitute should be made carefully in terms of risk assessment on aquatic ecosystems.

4.
Aquat Toxicol ; 261: 106608, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37364301

ABSTRACT

Due to the high production volume and persistence in the environment of bisphenol A (BPA) and its substitutes, realistic exposure scenarii were proposed in some species to better understand the relationship between external and internal concentrations. For example, a recent PBTK model has been developed and adapted to BPA ADME (Absorption, Distribution, Metabolization, and Excretion) processes in three-spined stickleback. These substances have an impact on organism physiology including reproductive and immune functions. In this context, physiologically-based toxicokinetic models coupled with toxicodynamics (PBTK-TD) have proven to be valuable tools to fill the knowledge gap between external exposure and effect dynamics. The aim of the current work was to explain the impact of BPA on the immune response by determining its temporality. In addition, the relationship between BPA dose and these responses was investigated using a PBTK-TD model. Two experiments were performed on stickleback to characterize their biomarker responses, (i) a short exposure (14 days) at 0, 10 and 100 µg/L, including a depuration phase (7 days), and (ii) a long exposure (21 days) at 100 µg/L to measure the immunomarker dynamic over a long period. The fish spleens were sampled to analyze immune responses of stickleback at various times of exposure and depuration: leucocyte distribution, phagocytic capacity and efficiency, lysosomal presence and leucocyte respiratory burst index. At the same date, blood, muscle, and liver were sampled to quantify BPA and their metabolites (BPA monoglucuronide and BPA monosulfate). All these data enabled the development of the indirect pharmacodynamic models (PBTK-TD) by implementing the responses of biomarkers in the existing BPA PBTK of stickleback. The results shown a high induction of phagocytosis activity by BPA in the two exposure conditions. Furthermore, the immunomarkers exhibit very different temporal dynamics. This study demonstrates the need of a thorough characterization of biomarker response for a further use in Environmental Biomonitoring.


Subject(s)
Smegmamorpha , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Smegmamorpha/physiology , Phagocytosis , Biomarkers
5.
Article in English | MEDLINE | ID: mdl-37099095

ABSTRACT

Preservation of biodiversity and ecosystem services is critical for sustainable development and human well-being. However, an unprecedented erosion of biodiversity is observed and the use of plant protection products (PPP) has been identified as one of its main causes. In this context, at the request of the French Ministries responsible for the Environment, for Agriculture and for Research, a panel of 46 scientific experts ran a nearly 2-year-long (2020-2022) collective scientific assessment (CSA) of international scientific knowledge relating to the impacts of PPP on biodiversity and ecosystem services. The scope of this CSA covered the terrestrial, atmospheric, freshwater, and marine environments (with the exception of groundwater) in their continuity from the site of PPP application to the ocean, in France and French overseas territories, based on international knowledge produced on or transposable to this type of context (climate, PPP used, biodiversity present, etc.). Here, we provide a brief summary of the CSA's main conclusions, which were drawn from about 4500 international publications. Our analysis finds that PPP contaminate all environmental matrices, including biota, and cause direct and indirect ecotoxicological effects that unequivocally contribute to the decline of certain biological groups and alter certain ecosystem functions and services. Levers for action to limit PPP-driven pollution and effects on environmental compartments include local measures from plot to landscape scales and regulatory improvements. However, there are still significant gaps in knowledge regarding environmental contamination by PPPs and its effect on biodiversity and ecosystem functions and services. Perspectives and research needs are proposed to address these gaps.

6.
Development ; 150(7)2023 04 01.
Article in English | MEDLINE | ID: mdl-36971372

ABSTRACT

Computational analysis of bio-images by deep learning (DL) algorithms has made exceptional progress in recent years and has become much more accessible to non-specialists with the development of ready-to-use tools. The study of oogenesis mechanisms and female reproductive success has also recently benefited from the development of efficient protocols for three-dimensional (3D) imaging of ovaries. Such datasets have a great potential for generating new quantitative data but are, however, complex to analyze due to the lack of efficient workflows for 3D image analysis. Here, we have integrated two existing open-source DL tools, Noise2Void and Cellpose, into an analysis pipeline dedicated to 3D follicular content analysis, which is available on Fiji. Our pipeline was developed on larvae and adult medaka ovaries but was also successfully applied to different types of ovaries (trout, zebrafish and mouse). Image enhancement, Cellpose segmentation and post-processing of labels enabled automatic and accurate quantification of these 3D images, which exhibited irregular fluorescent staining, low autofluorescence signal or heterogeneous follicles sizes. In the future, this pipeline will be useful for extensive cellular phenotyping in fish or mammals for developmental or toxicology studies.


Subject(s)
Deep Learning , Female , Animals , Mice , Ovary/diagnostic imaging , Zebrafish , Imaging, Three-Dimensional/methods , Image Processing, Computer-Assisted/methods , Mammals
7.
Toxicol In Vitro ; 89: 105588, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36958675

ABSTRACT

The zebrafish eleutheroembryo (zfe) is widely used as a model to characterize the toxicity of chemicals. However, analytical methods are still missing to measure organ concentrations. Therefore, physiologically-based toxicokinetic (PBTK) modeling may overcome current limitations to help understand the relationship between toxic effects and internal exposure in various organs. A previous PBTK model has been updated to include the chorionic transport barrier and its permeabilization, hatching dynamics within a zfe population over development, and active mediated transport mechanisms. The zfe PBTK model has been calibrated using measured time-dependent internal concentrations of PFBA, PFHxS, PFOA, and PFOS in a zfe population and evaluated using external datasets from the literature. Calibration was successful with 96% of the predictions falling within a 2-fold range of the observed concentrations. The external dataset was correctly estimated with about 50% of the predictions falling within a factor of 3 of the observed data and 10% of the predictions are out of the 10-fold error. The calibrated model suggested that active mediated transport differs between PFAS with a sulfonic and carboxylic acid functional end groups. This PBTK model predicts well the fate of PFAS with various physicochemical properties in zfe. Therefore, this model may improve the use of zfe as an alternative model in toxicokinetic-toxicodynamic studies and help to refine and reduce zfe-based experiments, while giving insights into the internal kinetics of chemicals.


Subject(s)
Fluorocarbons , Zebrafish , Animals , Bioaccumulation , Kinetics , Porosity , Fluorocarbons/toxicity
9.
Environ Sci Pollut Res Int ; 30(3): 7640-7653, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36044144

ABSTRACT

The zebrafish eleutheroembryo model is increasingly used to assess the toxicity and developmental adverse effects of xenobiotics. However, the actual exposure is seldom measured (poorly accessible), while a predictive model could estimate these concentrations. The predictions with a new eleutheroembryo physiologically based pharmacokinetic (PBPK) model have been evaluated using datasets obtained from literature data for several bisphenols. The model simulated the toxicokinetics of bisphenols A (BPA), AF, F, and S through the eleutheroembryo tissues while considering the body and organ growth. We further improved the predictions by adding dynamic flows through the embryo and/or its chorion, impact of experimental temperature, metabolic clearance, and saturation of the absorption by Bayesian calibration. The model structure was determined using the BPA dataset and generalized to the other bisphenols. This model revealed the central role of the chorion in the compound uptake in the first 48 h post-fertilization. The predictions for the BPA substitutes estimated by our PBPK model were compared to available toxicokinetics data for zebrafish embryos, and 63% and 88% of them were within a twofold and fivefold error intervals of the corresponding experimental values, respectively. This model provides a tool to design new eleutheroembryo assays and evaluate the actual exposure.


Subject(s)
Benzhydryl Compounds , Zebrafish , Animals , Zebrafish/metabolism , Bayes Theorem , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/metabolism , Phenols/toxicity , Phenols/metabolism
10.
Sci Total Environ ; 844: 157003, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35772548

ABSTRACT

Before their placing on the market, the safety of plant protection products (PPP) towards both human and animal health, and the environment has to be assessed using experimental and modelling approaches. Models are crucial tools for PPP risk assessment and some even help to avoid animal testing. This review investigated the use of modelling approaches in the ecotoxicology section of PPP active substance assessment reports prepared by the authorities and opened to consultation from 2011 to 2021 in the European Union. Seven categories of models (Structure-Activity, ToxicoKinetic, ToxicoKinetic-ToxicoDynamic, Species Sensitivity Distribution, population, community, and mixture) were searched for into the reports of 317 active substances. At least one model category was found for 44 % of the investigated active substances. The most detected models were Species Sensitivity Distribution, Structure-Activity and ToxicoKinetic for 27, 21 and 15 % of the active substances, respectively. The use of modelling was of particular importance for conventional active substances such as sulfonylurea or carbamates contrary to microorganisms and plant derived substances. This review also highlighted a strong imbalance in model usage among the biological groups considered in the European Regulation (EC) No 1107/2009. For example, models were more often used for aquatic than for terrestrial organisms (e.g., birds, mammals). Finally, a gap between the set of models used in reports and those existing in the literature was observed highlighting the need for the implementation of more sophisticated models into PPP regulation.


Subject(s)
Ecotoxicology , Magnoliopsida , Animals , European Union , Humans , Mammals , Plants , Risk Assessment
11.
Environ Sci Technol ; 56(10): 6500-6510, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35472258

ABSTRACT

An increasing number of pharmaceuticals found in the environment potentially impose adverse effects on organisms such as fish. Physiologically based kinetic (PBK) models are essential risk assessment tools, allowing a mechanistic approach to understanding chemical effects within organisms. However, fish PBK models have been restricted to a few species, limiting the overall applicability given the countless species. Moreover, many pharmaceuticals are ionizable, and fish PBK models accounting for ionization are rare. Here, we developed a generalized PBK model, estimating required parameters as functions of fish and chemical properties. We assessed the model performance for five pharmaceuticals (covering neutral and ionic structures). With biotransformation half-lives (HLs) from EPI Suite, 73 and 41% of the time-course estimations were within a 10-fold and a 3-fold difference from measurements, respectively. The performance improved using experimental biotransformation HLs (87 and 59%, respectively). Estimations for ionizable substances were more accurate than any of the existing species-specific PBK models. The present study is the first to develop a generalized fish PBK model focusing on mechanism-based parameterization and explicitly accounting for ionization. Our generalized model facilitates its application across chemicals and species, improving efficiency for environmental risk assessment and supporting an animal-free toxicity testing paradigm.


Subject(s)
Fishes , Models, Biological , Animals , Kinetics , Pharmaceutical Preparations , Risk Assessment
12.
Aquat Toxicol ; 247: 106174, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35462154

ABSTRACT

Bisphenol A (BPA) is a chemical of major concern due to its endocrine disrupting function, high production volume, and persistence in the aquatic environment. Consequently, organisms such as fish are subject to chronic exposure to BPA. However, physiologically-based toxicokinetic (PBTK) models, which are valuable tools to improve the understanding of a chemical's fate in an organism, have never been specifically adapted to model BPA toxicokinetics (TK) in fish. In our work, an existing PBTK developed for four different fish species was modified to model BPA ADME processes (absorption, distribution, metabolization and excretion). The metabolization of BPA into BPA-monoglucuronide (BPA gluc) and BPA-monosulfate (BPA sulf) and their TK in various organs was taking into account in the model. Experiments were performed to generate BPA TK data in a model species commonly used in ecotoxicology, the stickleback. The model structure had to include two sites of metabolization to simulate BPA TK accurately in stickleback organs. Thus, the fish liver may not be the only site of the metabolization of BPA: plasma or gills could also play a role in BPA metabolization. The PBTK model predictive performance evaluated on literature data in zebrafish and rainbow trout concurs with this conclusion. Finally, a calibration mixing data from the three species was compared to the calibration on stickleback data only.


Subject(s)
Smegmamorpha , Water Pollutants, Chemical , Animals , Benzhydryl Compounds/toxicity , Phenols , Toxicokinetics , Water Pollutants, Chemical/toxicity , Zebrafish
13.
Environ Sci Pollut Res Int ; 29(29): 43448-43500, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35391640

ABSTRACT

A wide diversity of plant protection products (PPP) is used for crop protection leading to the contamination of soil, water, and air, which can have ecotoxicological impacts on living organisms. It is inconceivable to study the effects of each compound on each species from each compartment, experimental studies being time consuming and cost prohibitive, and animal testing having to be avoided. Therefore, numerous models are developed to assess PPP ecotoxicological effects. Our objective was to provide an overview of the modeling approaches enabling the assessment of PPP effects (including biopesticides) on the biota. Six categories of models were inventoried: (Q)SAR, DR and TKTD, population, multi-species, landscape, and mixture models. They were developed for various species (terrestrial and aquatic vertebrates and invertebrates, primary producers, micro-organisms) belonging to diverse environmental compartments, to address different goals (e.g., species sensitivity or PPP bioaccumulation assessment, ecosystem services protection). Among them, mechanistic models are increasingly recognized by EFSA for PPP regulatory risk assessment but, to date, remain not considered in notified guidance documents. The strengths and limits of the reviewed models are discussed together with improvement avenues (multigenerational effects, multiple biotic and abiotic stressors). This review also underlines a lack of model testing by means of field data and of sensitivity and uncertainty analyses. Accurate and robust modeling of PPP effects and other stressors on living organisms, from their application in the field to their functional consequences on the ecosystems at different scales of time and space, would help going toward a more sustainable management of the environment. Graphical Abstract Combination of the keyword lists composing the first bibliographic query. Columns were joined together with the logical operator AND. All keyword lists are available in Supplementary Information at https://doi.org/10.5281/zenodo.5775038 (Larras et al. 2021).


Subject(s)
Crops, Agricultural , Ecosystem , Ecotoxicology , Pesticides , Animals , Pesticides/adverse effects , Risk Assessment
14.
Ecotoxicol Environ Saf ; 225: 112727, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34481353

ABSTRACT

The potential health risks associated with the pharmaceuticals released into the environment through effluents from sewage treatment plants have become a major cause for concern. Owing to the lack of effective indicators, monitoring the concentration of these pollutants in the aquatic environment is challenging. The aim of this study was to assess the toxicity of a mixture of five pharmaceutical drugs (paracetamol, carbamazepine, diclofenac, irbesartan, and naproxen) using the aquatic moss Fontinalis antipyretica as a bioindicator and bioaccumulator. We examined the effects of the drug mixture on the cellular antioxidant system, chlorophyll content, and morphological traits of F. antipyretica. The plant was exposed for 5 months to three concentrations of the mixture, including the environmental concentration (MX1), and 10- (MX10) and 100-times (MX100) the environmental concentration. The results showed that only carbamazepine and irbesartan were accumulated by the species. The bioconcentration level increased with exposure time, with the maximum uptake at the 4th month of exposure. The increase in bioaccumulation with exposure time was more evident in plants exposed to MX100. Analysis of the activity of antioxidant enzymes showed that superoxide dismutase (SOD, EC 1.15.1.1.) and catalase (EC 1.11.1.6.) were highly sensitive to the drug mixture. The activity of the enzymes was significantly higher in plants exposed to MX100; however, the activity of guaiacol peroxidase (GPX, EC 1.11.1.7.) was not significantly affected. Plants exposed to MX10 and MX100 had significantly lower total chlorophyll content and chlorophyll a/b ratio compared with those of plants in the control group; however, photosynthetic activity was restored after 5 months of exposure. The morphological characteristics of F. antipyretica were less sensitive to the treatment conditions.


Subject(s)
Bryopsida , Pharmaceutical Preparations , Water Pollutants, Chemical , Antioxidants , Bryopsida/metabolism , Catalase/metabolism , Chlorophyll A , Oxidative Stress , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/toxicity
15.
Toxicol Appl Pharmacol ; 414: 115424, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33524444

ABSTRACT

For the determination of acute toxicity of chemicals in zebrafish (Danio rerio) embryos, the OECD test guideline 236, relative to the Fish Embryo Toxicity Test (FET), stipulates a dose-response analysis of four lethal core endpoints and a quantitative characterization of abnormalities including their time-dependency. Routinely, the data are analyzed at the different observation times separately. However, observations at a given time strongly depend on the previous effects and should be analyzed jointly with them. To solve this problem, we developed multistate models for occurrence of developmental malformations and live events in zebrafish embryos exposed to eight concentrations of valproic acid (VPA) the first five days of life. Observations were recorded daily per embryo. We statistically infer on model structure and parameters using a numerical Bayesian framework. Hatching probability rate changed with time and we compared five forms of its time-dependence; a constant rate, a piecewise constant rate with a fixed hatching time at 48 h post fertilization, a piecewise constant rate with a variable hatching time, as well as a Hill and Gaussian form. A piecewise constant function of time adequately described the hatching data. The other transition rates were conditioned on the embryo body concentration of VPA, obtained using a physiologically-based pharmacokinetic model. VPA impacted mostly the malformation probability rate in hatched and non-hatched embryos. Malformation reversion probability rates were lowered by VPA. Direct mortality was low at the concentrations tested, but increased linearly with internal concentration. The model makes full use of data and gives a finer grain analysis of the teratogenic effects of VPA in zebrafish than the OECD-prescribed approach. We discuss the use of the model for obtaining toxicological reference values suitable for inter-species extrapolation. A general result is that complex multistate models can be efficiently evaluated numerically.


Subject(s)
Abnormalities, Drug-Induced/etiology , Models, Biological , Teratogens/toxicity , Toxicity Tests, Acute , Valproic Acid/toxicity , Abnormalities, Drug-Induced/embryology , Animals , Bayes Theorem , Computer Simulation , Dose-Response Relationship, Drug , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/drug effects , Numerical Analysis, Computer-Assisted , Teratogens/pharmacokinetics , Toxicokinetics , Valproic Acid/pharmacokinetics , Zebrafish/embryology
16.
Sci Total Environ ; 773: 144734, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33582354

ABSTRACT

Aquatic organisms are exposed to mixtures of chemicals that may interact. Mixtures of atrazine (ATR) and chlorpyrifos (CPF) may elicit synergic effects on the permanent inhibition of acetylcholinesterase (AChE) in certain aquatic organisms, causing severe damage. Mechanistic mathematical models of toxicokinetics and toxicodynamics (TD) may be used to better characterize and understand the interactions of these two chemicals. In this study, a previously published generic physiologically-based toxicokinetic (PBTK) model for fish was adapted to ATR and CPF. A sub-model of the kinetics of one of the main metabolites of CPF, chlorpyrifos-oxon (CPF-oxon), was included, as well as a TD model. Inhibition of two esterases, AChE and carboxylesterase, by ATR, CPF and CPF-oxon, was modeled using TD modeling of quantities of total and inactive esterases. Specific attention was given to the parameterization and calibration of the model to accurately predict the concentration and effects observed in the fish using Bayesian inference and published data from fathead minnow (Pimephales promelas), zebrafish (Danio rerio) and common carp (Cyprinus carpio L.). A PBTK-TD for mixtures was used to predict dose-response relationships for comparison with available adult fish data. Synergistic effects of a joint exposure to ATR and CPF could not be demonstrated in adult fish.


Subject(s)
Atrazine , Carps , Chlorpyrifos , Insecticides , Water Pollutants, Chemical , Acetylcholine , Acetylcholinesterase , Animals , Atrazine/toxicity , Bayes Theorem , Chlorpyrifos/toxicity , Insecticides/toxicity , Kinetics , Water Pollutants, Chemical/toxicity , Zebrafish
17.
Ecotoxicol Environ Saf ; 208: 111407, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33068981

ABSTRACT

The use of a multi-biomarker approach with three-spined sticklebacks (Gasterosteus aculeatus) through an active biomonitoring strategy appears to be a promising tool in water quality assessment. The present work proposes to assess the efficiency of these tools in the discrimination of some sites in a large scale on the Meuse basin in Europe. The study was part of an EU program which aims to assess water quality in the Meuse across the French-Belgian border. Sticklebacks were caged 21 days upstream and downstream from the wastewater treatment plants (WWTPs) of Namur (Belgium), Charleville-Mézières (France), Bouillon (Belgium) and Avesnes-sur-Helpe (France). First, the state of a variety of physiological functions was assessed using a battery of biomarkers that represented innate immunity (leucocyte mortality and distribution, phagocytosis activity, respiratory burst), antioxidant system (GPx, CAT, SOD and total GSH content), oxidative damages to the membrane lipids (TBARS), biotransformation enzymes (EROD, GST), synaptic transmission (AChE) and reproduction system (spiggin and vitellogenin concentration). The impacts of the effluents were first analysed for each biomarker using a mixed model ANOVA followed by post-hoc analyses. Secondly, the global river contamination was assessed using a principal component analysis (PCA) followed by a hierarchical agglomerative clustering (HAC). The results highlighted a small number of effects of WWTP effluents on the physiological parameters in caged sticklebacks. Despite a significant effect of the "localisation" factor (upstream/downstream) in the mixed ANOVA for several biomarkers, post-hoc analyses revealed few differences between upstream and downstream of the WWTPs. Only a significant decrease of innate immune responses was observed downstream from the WWTPs of Avesnes-sur-Helpe and Namur. Other biomarker responses were not impacted by WWTP effluents. However, the multivariate analyses (PCA and HAC) of the biomarker responses helped to clearly discriminate the different study sites from the reference but also amongst themselves. Thus, a reduction of general condition (condition index and HSI) was observed in all groups of caged sticklebacks, associated with a weaker AChE activity in comparison with the reference population. A strong oxidative stress was highlighted in fish caged in the Meuse river at Charleville-Mézières whereas sticklebacks caged in the Meuse river at Namur exhibited weaker innate immune responses than others. Conversely, sticklebacks caged in the Helpe-Majeure river at Avesnes-sur-Helpe exhibited higher immune responses. Furthermore, weak defence capacities were recorded in fish caged in the Semois river at Bouillon. This experiment was the first to propose an active biomonitoring approach using three-spined stickleback to assess such varied environments. Low mortality and encouraging results in site discrimination support the use of this tool to assess the quality of a large number of water bodies.


Subject(s)
Smegmamorpha/physiology , Water Pollutants, Chemical/analysis , Water Quality , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Environmental Monitoring , Europe , Fish Proteins , France , Oxidative Stress , Rivers , Smegmamorpha/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Vitellogenins/metabolism
18.
Ecotoxicol Environ Saf ; 203: 110979, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32678758

ABSTRACT

Recent EFSA (European Food Safety Authority) reports highlighted that the ecological risk assessment of pesticides needed to go further by taking more into account the impacts of chemicals on biodiversity under field conditions. We assessed the effects of two commercial formulations of fungicides separately and in mixture, i.e., Cuprafor Micro® (containing 500 g kg-1 copper oxychloride) at 4 (C1, corresponding to 3.1 mg kg-1 dry soil of copper) and 40 kg ha-1 (C10), and Swing® Gold (50 g L-1 epoxiconazole EPX and 133 g L-1 dimoxystrobin DMX) at one (D1, 5.81 10-2 and 1.55 10-1 mg kg-1 dry soil of EPX and DMX, respectively) and ten times (D10) the recommended field rate, on earthworms at 1, 6, 12, 18 and 24 months after the application following the international ISO standard no. 11268-3 to determine the effects on earthworms in field situations. The D10 treatment significantly reduced the species diversity (Shannon diversity index, 54% of the control), anecic abundance (29% of the control), and total biomass (49% of the control) over the first 18 months of experiment. The Shannon diversity index also decreased in the mixture treatment (both fungicides at the recommended dose) at 1 and 6 months after the first application (68% of the control at both sampling dates), and in C10 (78% of the control) at 18 months compared with the control. Lumbricus terrestris, Aporrectodea caliginosa, Aporrectodea giardi, Aporrectodea longa, and Allolobophora chlorotica were (in decreasing order) the most sensitive species to the tested fungicides. This study not only addressed field ecotoxicological effects of fungicides at the community level and ecological recovery, but it also pinpointed some methodological weaknesses (e.g., regarding fungicide concentrations in soil and statistics) of the guideline to determine the effects on earthworms in field situations.


Subject(s)
Copper/toxicity , Environmental Monitoring/methods , Epoxy Compounds/toxicity , Fungicides, Industrial/toxicity , Oligochaeta/drug effects , Soil Pollutants/toxicity , Triazoles/toxicity , Animals , Biodiversity , Biomass , Copper/analysis , Ecotoxicology , Epoxy Compounds/analysis , Fungicides, Industrial/analysis , Oligochaeta/growth & development , Risk Assessment , Soil/chemistry , Soil Pollutants/analysis , Triazoles/analysis
19.
Aquat Toxicol ; 225: 105545, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32569995

ABSTRACT

Salmonids are poikilotherms, which means that their internal temperature varies with that of water. Water temperature thus controls many of their lifecycle processes and physiological functions, which could influence the mechanisms of absorption, distribution, metabolism and excretion (ADME) of many substances, including perfluorinated alkyl acids (PFAAs). However, the processes governing the fate of PFAAs are still poorly understood in fish. Here we developed a physiologically-based toxicokinetic (PBTK) model for rainbow trout (Oncorhynchus mykiss) to study changes in physiological functions and PFAA ADME at different temperatures. The model was calibrated using experimental data from dietary exposure to perfluorooctane sulfonate at 7 °C and 19 °C. Predictions of PFOS concentrations were globally satisfactory at both temperatures, when accounting for the influence of temperature on growth, ventilation rate, cardiac output, clearances, and absorption rates. Accounting for the influence of temperature on tissue-plasma partition coefficients significantly improved predicted in-organ PFOS concentrations.


Subject(s)
Alkanesulfonic Acids/toxicity , Fluorocarbons/toxicity , Oncorhynchus mykiss/physiology , Water Pollutants, Chemical/toxicity , Animals , Dietary Exposure , Oncorhynchus mykiss/metabolism , Temperature , Toxicokinetics
20.
Aquat Toxicol ; 224: 105499, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32416570

ABSTRACT

Pharmaceutical substances are ubiquitous in the aquatic environment and their concentration levels typically range from ng/L up to several µg/L. Furthermore, as those compounds are designed to be highly biologically active, assessing their impacts on non-target organisms is important. Here, we conducted a mesocosm experiment testing a mixture of five pharmaceuticals (diclofenac, carbamazepine, irbesartan, acetaminophen and naproxen) on fish, three-spined stickleback (Gasterosteus aculeatus). The mixture concentration levels were chosen on the basis of the contamination of the Meuse river in Belgium which had been measured previously during a monitoring campaign undertaken in 2015 and 2016. Three nominal mixture concentration levels were tested: the lowest concentration level mixture was composed by environmentally-relevant concentrations that approximate average realistic values for each pharmaceuticals (Mx1); the two other levels were 10 and 100 times these concentrations. Although no impact on stickleback prey was observed, the mixture significantly impaired the survival of female fish introduced in the mesocosms at the highest treatment level without causing other major differences on fish population structure. Impacts on condition factors of adults and juveniles were also observed at both individual and population levels. Using a modelling approach with an individual-based model coupled to a bioenergetic model (DEB-IBM), we concluded that chronic exposure to environmentally-relevant concentrations of five pharmaceuticals often detected in the rivers did not appear to strongly affect the three-spined stickleback populations. Mechanisms of population regulation may have counteracted the mixture impacts in the mesocosms.


Subject(s)
Pharmaceutical Preparations/analysis , Rivers/chemistry , Smegmamorpha/growth & development , Water Pollutants, Chemical/toxicity , Acetaminophen/analysis , Acetaminophen/toxicity , Animals , Belgium , Carbamazepine/analysis , Carbamazepine/toxicity , Diclofenac/analysis , Diclofenac/toxicity , Female , Models, Theoretical , Naproxen/analysis , Naproxen/toxicity , Population Dynamics , Smegmamorpha/physiology , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL