Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36556811

ABSTRACT

In this study, the effect of rotary-die equal-channel angular pressing (RD-ECAP) on the microstructure and texture evolution of GW103 alloy is studied. RD-ECAP processes were carried out for 1, 4 and 12 passes at 450 °C. The mechanical properties and friction behavior of RD-ECAP-processed Mg-10Gd-3Y (wt%) alloy (GW103) are discussed. The results reveal that the size of dynamic recrystallized grains and second-phase particles are significantly refined to about 1.3 µm and 1 µm, respectively. The texture evolution of the processed samples is studied by X-ray diffraction and electron backscattered diffraction techniques. The multiple texture components formed are not observed after the conventional ECAP process. Moreover, different dynamic recrystallization (DRX) mechanisms are systemically analyzed and discussed in view of the texture evolution of ECAP processed samples. The final textures obtained after 12 passes are identified as two types: The C-texture type induced by continuous and discontinuous DRX, and the random texture components induced by reorientation of the initial <101¯0> fiber. Based on the grain refinement, precipitate strengthening and texture weakening mechanisms, a high-performance ternary alloy of Mg-Gd-Y was firstly obtained through 12 passes RD-ECAP processing, with a combination of high yield strength of 312 MPa and a high ductility of 22%. In addition, the friction behaviors are also studied. The multi-pass-processed samples exhibit a relatively lower friction coefficient under a load of 10 N at room temperature.

2.
Ultramicroscopy ; 221: 113158, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33338818

ABSTRACT

Optical distortions caused by camera lenses affect the accuracy of the elastic strains and lattice rotations measured by high-angular resolution techniques. This article introduces an integrated correction of optical distortions for global HR-EBSD/HR-TKD approaches. The digital image correlation analysis is directly applied to optically distorted patterns, avoiding the pattern pre-processing step conducted so far while preserving the numerical efficiency of the Gauss-Newton algorithm. The correction implementation is first described and its numerical cost is assessed considering a homography-based HR-EBSD approach. The correction principle is validated numerically for various levels of first-order radial distortion over a wide range of disorientation angles (0 to 14°) and elastic strain (0 to 5×10-2). The errors induced when neglecting such distortions as well as the influence of both the radial distortion coefficient and the pattern centre and optical centre locations are quantified. Even when both reference and target patterns are distorted, the correction appears necessary whatever the disorientation between those patterns. The required accuracy on the true distortion parameters for an effective correction is consequently determined.

3.
Nature ; 507(7490): 51-6, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24572356

ABSTRACT

Mantle flow involves large strains of polymineral aggregates. The strongly anisotropic plastic response of each individual grain in the aggregate results from the interactions between neighbouring grains and the continuity of material displacement across the grain boundaries. Orthorhombic olivine, which is the dominant mineral phase of the Earth's upper mantle, does not exhibit enough slip systems to accommodate a general deformation state by intracrystalline slip without inducing damage. Here we show that a more general description of the deformation process that includes the motion of rotational defects referred to as disclinations can solve the olivine deformation paradox. We use high-resolution electron backscattering diffraction (EBSD) maps of deformed olivine aggregates to resolve the disclinations. The disclinations are found to decorate grain boundaries in olivine samples deformed experimentally and in nature. We present a disclination-based model of a high-angle tilt boundary in olivine, which demonstrates that an applied shear induces grain-boundary migration through disclination motion. This new approach clarifies grain-boundary-mediated plasticity in polycrystalline aggregates. By providing the missing mechanism for describing plastic flow in olivine, this work will permit multiscale modelling of the rheology of the upper mantle, from the atomic scale to the scale of the flow.

SELECTION OF CITATIONS
SEARCH DETAIL
...