Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Forensic Med Pathol ; 35(4): 239-41, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25354225

ABSTRACT

Acephate is a commercial organophosphate pesticide formerly used in households and now used primarily for agriculture. Poisoning symptoms include salivation, lacrimation, urination, defecation, gastrointestinal illness, and emesis. In addition to these classic symptoms, neurodegeneration can result from increased and continued exposure of organophosphates. This 55-year-old woman presented with organophosphate-induced delayed neuropathy in the form of quadriplegia due to the commonly used pesticide acephate. She was exposed to this pesticide through multiple sprayings in her work office with underrecognized poisoning symptoms. She presented to her primary care physician with neuropathic pain and paralysis in her arm following the sprayings and eventual complete paralysis. The patient lived for 2 years following her toxic exposure and quadriplegia. A complete autopsy after her death confirmed a transverse myelitis in her spinal cord. We conclude that in susceptible individuals, acephate in excessive amounts can produce severe delayed neurotoxicity as demonstrated in animal studies.


Subject(s)
Insecticides/poisoning , Occupational Diseases/chemically induced , Occupational Exposure/adverse effects , Organothiophosphorus Compounds/poisoning , Phosphoramides/poisoning , Quadriplegia/chemically induced , Fatal Outcome , Female , Humans , Middle Aged
2.
Mol Pharmacol ; 76(3): 588-95, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19528198

ABSTRACT

Docosahexaenoic acid (DHA; n-3, 22:6) is known to have anticancer activity, but its mechanisms of action remain to be further elucidated. We recently demonstrated that DHA down-regulates superoxide dismutase (SOD) 1 gene expression, thereby weakening cellular antioxidant forces and enhancing cytotoxicity in various human cancer cells. The objective of this study was to investigate the mechanism of the inhibitory effect of DHA on SOD-1 gene expression in human cancer cells. A reporter gene assay indicated that DHA suppresses SOD-1 gene transcription in a time- and concentration-dependent manner in human cancer cells. Pretreatment with vitamin E did not block the inhibitory effect of DHA, indicating that this suppression does not depend on lipid peroxidation. The suppressive effect of DHA on SOD-1 gene transcription could be mimicked by the peroxisome proliferator-activator receptor (PPAR) alpha ligand clofibrate but not the PPARgamma ligand troglitazone, suggesting the involvement of PPARalpha signaling. Deletion analysis of the key DNA binding elements in the SOD-1 gene promoter identified the distal hypoxia response element (HRE), but not the peroxisome proliferator response element or nuclear factor-kappaB element, as essential for the suppressive effects of DHA. Coimmunoprecipitation confirmed that PPARalpha, but not PPARgamma, forms a complex with hypoxia-inducible factor (HIF)-2alpha in cancer cells. Chromatin immunoprecipitation analysis indicated that both DHA and clofibrate reduce HIF-2alpha binding to the HRE. Thus, we have identified the distal HRE in the SOD-1 gene promoter that mediates the suppression on the transcription of this gene by DHA, and we have demonstrated the involvement of PPARalpha and HIF-2alpha signaling in this event.


Subject(s)
Antineoplastic Agents/pharmacology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Docosahexaenoic Acids/pharmacology , PPAR alpha/metabolism , Superoxide Dismutase/antagonists & inhibitors , Transcription, Genetic/drug effects , Cell Line, Tumor , Clofibrate/pharmacology , Humans , Ligands , Superoxide Dismutase/genetics , Superoxide Dismutase-1
SELECTION OF CITATIONS
SEARCH DETAIL