Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2441: 223-231, 2022.
Article in English | MEDLINE | ID: mdl-35099740

ABSTRACT

Murine laser-induced laser choroidal neovascularization is a widely used and robust model of wet (exudative) age-related macular degeneration (wAMD). wAMD is one of the leading causes of blindness in the Western world. In brief, a focused laser beam is used to penetrate Bruch's membrane, which separates the choriocapillaris (well-vascularized choroid layer) from the pigmented layers of the retina. Damage to the integrity of this membrane during diabetes leads to fluid accumulation and vascular invasion into the subretinal layers resulting in a progressive worsening of vision. Here we describe a 14-day model using untreated C57/Bl6 mice, but it is equally applicable to incorporation into transgenic studies and therapeutic agent development (such as eye drops), injection of therapeutic agents (including antibodies), and for longer time course studies. In vivo functional analysis or lesioned choroids can be studied with further immunohistochemical staining for further analyses.


Subject(s)
Choroidal Neovascularization , Macular Degeneration , Animals , Bruch Membrane/metabolism , Choroid/blood supply , Choroidal Neovascularization/etiology , Lasers , Macular Degeneration/metabolism , Mice
2.
Methods Mol Biol ; 2441: 251-255, 2022.
Article in English | MEDLINE | ID: mdl-35099742

ABSTRACT

Cell transfection using short interfering RNAs (siRNAs) is a widely used technique to perform loss of function studies by "knocking down" genes of interest. Oftentimes, primary cells can be difficult to transfect, but here we provide a simple and robust method using cultured endothelial cells and routine transfection reagents. Knockdown studies can be used to complement overexpression studies and validate biochemical pathway analysis, as well as functional assays. The enclosed protocol will compliment other in vitro assays detailed in this edition.


Subject(s)
Endothelial Cells , Oligonucleotides , Endothelial Cells/metabolism , Gene Knockdown Techniques , Oligonucleotides/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transfection
3.
Mol Ther ; 29(7): 2239-2252, 2021 07 07.
Article in English | MEDLINE | ID: mdl-33744469

ABSTRACT

MicroRNAs (miRNAs) regulate gene expression by post-transcriptional inhibition of target genes. Proangiogenic small extracellular vesicles (sEVs; popularly identified with the name "exosomes") with a composite cargo of miRNAs are secreted by cultured stem cells and present in human biological fluids. Lipid nanoparticles (LNPs) represent an advanced platform for clinically approved delivery of RNA therapeutics. In this study, we aimed to (1) identify the miRNAs responsible for sEV-induced angiogenesis; (2) develop the prototype of bioinspired "artificial exosomes" (AEs) combining LNPs with a proangiogenic miRNA, and (3) validate the angiogenic potential of the bioinspired AEs. We previously reported that human sEVs from bone marrow (BM)-CD34+ cells and pericardial fluid (PF) are proangiogenic. Here, we have shown that sEVs secreted from saphenous vein pericytes and BM mesenchymal stem cells also promote angiogenesis. Analysis of miRNA datasets available in-house or datamined from GEO identified the let-7 family as common miRNA signature of the proangiogenic sEVs. LNPs with either hsa-let-7b-5p or cyanine 5 (Cy5)-conjugated Caenorhabditis elegans miR-39 (Cy5-cel-miR-39; control miRNA) were prepared using microfluidic micromixing. let-7b-5p-AEs did not cause toxicity and transferred functionally active let-7b-5p to recipient endothelial cells (ECs). let-7b-AEs also improved EC survival under hypoxia and angiogenesis in vitro and in vivo. Bioinspired proangiogenic AEs could be further developed into innovative nanomedicine products targeting ischemic diseases.


Subject(s)
Exosomes/metabolism , Extracellular Vesicles/metabolism , Liposomes/chemistry , MicroRNAs/metabolism , Nanoparticles/chemistry , Neovascularization, Physiologic , Pericardial Fluid/physiology , Animals , Exosomes/genetics , Extracellular Vesicles/genetics , Human Umbilical Vein Endothelial Cells , Humans , In Vitro Techniques , Mice , MicroRNAs/genetics
5.
Compr Physiol ; 8(3): 955-979, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29978898

ABSTRACT

The vascular endothelial growth factor (VEGF) family of proteins are key regulators of physiological systems. Originally linked with endothelial function, they have since become understood to be principal regulators of multiple tissues, both through their actions on vascular cells, but also through direct actions on other tissue types, including epithelial cells, neurons, and the immune system. The complexity of the five members of the gene family in terms of their different splice isoforms, differential translation, and specific localizations have enabled tissues to use these potent signaling molecules to control how they function to maintain their environment. This homeostatic function of VEGFs has been less intensely studied than their involvement in disease processes, development, and reproduction, but they still play a substantial and significant role in healthy control of blood volume and pressure, interstitial volume and drainage, renal and lung function, immunity, and signal processing in the peripheral and central nervous system. The widespread expression of VEGFs in healthy adult tissues, and the disturbances seen when VEGF signaling is inhibited support this view of the proteins as endogenous regulators of normal physiological function. This review summarizes the evidence and recent breakthroughs in understanding of the physiology that is regulated by VEGF, with emphasis on the role they play in maintaining homeostasis. © 2017 American Physiological Society. Compr Physiol 8:955-979, 2018.


Subject(s)
Homeostasis/physiology , Vascular Endothelial Growth Factors/metabolism , Animals , Gene Expression Regulation/physiology , Humans , RNA Splicing , Vascular Endothelial Growth Factors/genetics
6.
J Cell Sci ; 131(14)2018 07 26.
Article in English | MEDLINE | ID: mdl-29930087

ABSTRACT

Many potential causes for painful diabetic neuropathy have been proposed including actions of cytokines and growth factors. High mobility group protein B1 (HMGB1) is a RAGE (also known as AGER) agonist whose levels are increased in diabetes and that contributes to pain by modulating peripheral inflammatory responses. HMGB1 enhances nociceptive behaviour in naïve animals through an unknown mechanism. We tested the hypothesis that HMGB1 causes pain through direct neuronal activation of RAGE and alteration of nociceptive neuronal responsiveness. HMGB1 and RAGE expression were increased in skin and primary sensory (dorsal root ganglion, DRG) neurons of diabetic rats at times when pain behaviour was enhanced. Agonist-evoked TRPV1-mediated Ca2+ responses increased in cultured DRG neurons from diabetic rats and in neurons from naïve rats exposed to high glucose concentrations. HMGB1-mediated increases in TRPV1-evoked Ca2+ responses in DRG neurons were RAGE- and PKC-dependent, and this was blocked by co-administration of the growth factor splice variant VEGF-A165b. Pain behaviour and the DRG RAGE expression increases were blocked by VEGF-A165b treatment of diabetic rats in vivo Hence, we conclude that HMGB1-RAGE activation sensitises DRG neurons in vitro, and that VEGF-A165b blocks HMGB-1-RAGE DRG activation, which may contribute to its analgesic properties in vivo.


Subject(s)
Diabetic Neuropathies/metabolism , Glucose/metabolism , HMGB1 Protein/metabolism , Receptor for Advanced Glycation End Products/metabolism , Sensory Receptor Cells/metabolism , TRPV Cation Channels/metabolism , Animals , Calcium/metabolism , Diabetic Neuropathies/genetics , Female , Ganglia, Spinal/metabolism , HMGB1 Protein/genetics , Humans , Male , Nociceptors/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptor for Advanced Glycation End Products/genetics , TRPV Cation Channels/genetics , Vascular Endothelial Growth Factor A/metabolism
7.
F1000Res ; 7: 341, 2018.
Article in English | MEDLINE | ID: mdl-29623199

ABSTRACT

Central nervous system (CNS) pericytes regulate critical functions of the neurovascular unit in health and disease. CNS pericytes are an attractive pharmacological target for their position within the neurovasculature and for their role in neuroinflammation. Whether the function of CNS pericytes also affects pain states and nociceptive mechanisms is currently not understood. Could it be that pericytes hold the key to pain associated with CNS blood vessel dysfunction? This article reviews recent findings on the important physiological functions of CNS pericytes and highlights how these neurovascular functions could be linked to pain states.

8.
Curr Opin Support Palliat Care ; 12(2): 154-161, 2018 06.
Article in English | MEDLINE | ID: mdl-29553988

ABSTRACT

PURPOSE OF REVIEW: The importance of the blood-brain barrier (BBB) and neuroinflammation in neurodegenerative conditions is becoming increasingly apparent, yet very little is known about these neurovascular functions in nonmalignant disease chronic pain. Neural tissue pericytes play critical roles in the formation and maintenance of the BBB. Herein, we review the important roles of neural pericytes and address their potential role in chronic pain. RECENT FINDINGS: Pericytes are implicated in the function of neural microvasculature, including BBB permeability, neuroimmune factor secretion and leukocyte transmigration. In addition, the multipotent stem cell nature of pericytes affords pericytes the ability to migrate into neural parenchyma and differentiate into pain-associated cell types. These recent findings indicate that pericytes are key players in pathological BBB disruption and neuroinflammation, and as such pericytes may be key players in chronic pain states. SUMMARY: Pericytes play key roles in pathological processes associated with chronic pain. We propose that pericytes may be a therapeutic target for painful diseases that have associated neural vascular dysfunction. Given the paucity of new pharmacotherapies for chronic pain conditions, we hope that this review inspires researchers to unearth the potential role(s) of pericytes in chronic pain sowing the seeds for future new chronic pain therapies.


Subject(s)
Blood-Brain Barrier/metabolism , Chronic Pain/physiopathology , Inflammation/metabolism , Pericytes/metabolism , Analgesics/administration & dosage , Blood-Brain Barrier/immunology , Drug Delivery Systems/methods , Humans , Inflammation/immunology , Leukocytes/metabolism , Neuroimmunomodulation/physiology
9.
Brain Behav Immun ; 74: 49-67, 2018 11.
Article in English | MEDLINE | ID: mdl-29548992

ABSTRACT

Chronic pain can develop in response to conditions such as inflammatory arthritis. The central mechanisms underlying the development and maintenance of chronic pain in humans are not well elucidated although there is evidence for a role of microglia and astrocytes. However in pre-clinical models of pain, including models of inflammatory arthritis, there is a wealth of evidence indicating roles for pathological glial reactivity within the CNS. In the spinal dorsal horn of rats with painful inflammatory arthritis we found both a significant increase in CD11b+ microglia-like cells and GFAP+ astrocytes associated with blood vessels, and the number of activated blood vessels expressing the adhesion molecule ICAM-1, indicating potential glio-vascular activation. Using pharmacological interventions targeting VEGFR2 in arthritic rats, to inhibit endothelial cell activation, the number of dorsal horn ICAM-1+ blood vessels, CD11b+ microglia and the development of secondary mechanical allodynia, an indicator of central sensitization, were all prevented. Targeting endothelial VEGFR2 by inducible Tie2-specific VEGFR2 knock-out also prevented secondary allodynia in mice and glio-vascular activation in the dorsal horn in response to inflammatory arthritis. Inhibition of VEGFR2 in vitro significantly blocked ICAM-1-dependent monocyte adhesion to brain microvascular endothelial cells, when stimulated with inflammatory mediators TNF-α and VEGF-A165a. Taken together our findings suggest that a novel VEGFR2-mediated spinal cord glio-vascular mechanism may promote peripheral CD11b+ circulating cell transmigration into the CNS parenchyma and contribute to the development of chronic pain in inflammatory arthritis. We hypothesise that preventing this glio-vascular activation and circulating cell translocation into the spinal cord could be a new therapeutic strategy for pain caused by rheumatoid arthritis.


Subject(s)
Endothelium/physiology , Pain/physiopathology , Vascular Endothelial Growth Factor Receptor-2/physiology , Animals , Arthritis/immunology , Arthritis/physiopathology , Astrocytes/metabolism , Chronic Pain/complications , Endothelial Cells/metabolism , Hyperalgesia/drug therapy , Inflammation/physiopathology , Male , Mice , Mice, Transgenic , Microglia/metabolism , Neuralgia/metabolism , Pilot Projects , Rats , Rats, Wistar , Spinal Cord/metabolism , Spinal Cord Dorsal Horn/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
10.
Drug Discov Today ; 21(11): 1787-1798, 2016 11.
Article in English | MEDLINE | ID: mdl-27329269

ABSTRACT

Since the sequencing of metazoan genomes began, it has become clear that the number of expressed proteins far exceeds the number of genes. It is now estimated that more than 98% of human genes give rise to multiple proteins through alternative pre-mRNA splicing. In this review, we highlight the known alternative splice variants of many channels, receptors, and growth factors that are important in nociception and pain. Recently, pharmacological control of alternative splicing has been proposed as potential therapy in cancer, wet age-related macular degeneration, retroviral infections, and pain. Thus, we also consider the effects that known splice variants of molecules key to nociception/pain have on nociceptive processing and/or analgesic action, and the potential for control of alternative pre-mRNA splicing as a novel analgesic strategy.


Subject(s)
Alternative Splicing , Pain Management , Pain/genetics , Animals , Humans , Intercellular Signaling Peptides and Proteins/genetics , Ion Channels/genetics , Receptors, G-Protein-Coupled/genetics
11.
Clin Sci (Lond) ; 129(8): 741-56, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26201024

ABSTRACT

Diabetic peripheral neuropathy affects up to half of diabetic patients. This neuronal damage leads to sensory disturbances, including allodynia and hyperalgesia. Many growth factors have been suggested as useful treatments for prevention of neurodegeneration, including the vascular endothelial growth factor (VEGF) family. VEGF-A is generated as two alternative splice variant families. The most widely studied isoform, VEGF-A165a is both pro-angiogenic and neuroprotective, but pro-nociceptive and increases vascular permeability in animal models. Streptozotocin (STZ)-induced diabetic rats develop both hyperglycaemia and many of the resulting diabetic complications seen in patients, including peripheral neuropathy. In the present study, we show that the anti-angiogenic VEGF-A splice variant, VEGF-A165b, is also a potential therapeutic for diabetic neuropathy. Seven weeks of VEGF-A165b treatment in diabetic rats reversed enhanced pain behaviour in multiple behavioural paradigms and was neuroprotective, reducing hyperglycaemia-induced activated caspase 3 (AC3) levels in sensory neuronal subsets, epidermal sensory nerve fibre loss and aberrant sciatic nerve morphology. Furthermore, VEGF-A165b inhibited a STZ-induced increase in Evans Blue extravasation in dorsal root ganglia (DRG), saphenous nerve and plantar skin of the hind paw. Increased transient receptor potential ankyrin 1 (TRPA1) channel activity is associated with the onset of diabetic neuropathy. VEGF-A165b also prevented hyperglycaemia-enhanced TRPA1 activity in an in vitro sensory neuronal cell line indicating a novel direct neuronal mechanism that could underlie the anti-nociceptive effect observed in vivo. These results demonstrate that in a model of Type I diabetes VEGF-A165b attenuates altered pain behaviour and prevents neuronal stress, possibly through an effect on TRPA1 activity.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetic Neuropathies/prevention & control , Nerve Degeneration/prevention & control , Neuralgia/prevention & control , Vascular Endothelial Growth Factor A/therapeutic use , Animals , Cell Line , Diabetic Neuropathies/etiology , Drug Evaluation, Preclinical , Evans Blue , Female , Ganglia, Spinal/drug effects , Hyperglycemia/complications , Male , Rats, Sprague-Dawley , Rats, Wistar , Sensory Receptor Cells/drug effects , TRPA1 Cation Channel , TRPC Cation Channels/analysis , Vascular Endothelial Growth Factor A/pharmacology
12.
Am J Cancer Res ; 5(1): 433-41, 2015.
Article in English | MEDLINE | ID: mdl-25628951

ABSTRACT

Targeting activating mutations in the proto-oncogene B-Raf, in melanoma, has led to increases in progression free survival. Treatment with vemurafenib, which inhibits the most common activating-mutated form of B-Raf (B-Raf(V600E)), eventually results in resistance to therapy. VEGF-A is the principal driver of angiogenesis in primary and metastatic lesions. The bioactivity of VEGF-A is dependent upon alternative RNA splicing and pro-angiogenic isoforms of VEGF-A are upregulated in many disease states dependent upon angiogenesis, including cancers. Using techniques including RT-PCR, Western blotting, ELISA and luciferase reporter assays, the effect of vemurafenib on proliferation, ERK1/2 phosphorylation and the levels of pro- and anti-angiogenic VEGF-A isoforms was investigated in melanoma cell types expressing either wild-type B-Raf or B-Raf(V600E), including a primary melanoma culture derived from a highly vascularised and active nodule taken from a patient with a V600E mutant melanoma. The primary melanoma culture was characterised and found to have reverted to wild-type B-Raf. In B-Raf(V600E) A375 cells ERK1/2 phosphorylation, pro-angiogenic VEGF-A mRNA, total VEGF-A protein expression and VEGF-A 3'UTR activity were all decreased in a concentration-dependent manner by vemurafenib. Conversely vemurafenib treatment of wild-type B-Raf cells significantly increased ERK1/2 phosphorylation, pro-angiogenic VEGF-A mRNA and total VEGF-A expression in a concentration-dependent manner. A switch to pro-angiogenic VEGF-A isoforms, with a concomitant upregulation of expression by increasing VEGF-A mRNA stability, may be an additional oncogenic and pathological mechanism in B-Raf(V600E) melanomas, which promotes tumor-associated angiogenesis and melanoma-genesis. We have also identified the genetic reversal of B-Raf(V600E) to wild-type in an active melanoma nodule taken from a V600E-positive patient and continued vemurafenib treatment for this patient is likely to have had a detrimental effect by promoting B-Raf(WT) activity.

13.
Am J Pathol ; 183(3): 918-29, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23838428

ABSTRACT

Vascular endothelial growth factor (VEGF) A is generated as two isoform families by alternative RNA splicing, represented by VEGF-A165a and VEGF-A165b. These isoforms have opposing actions on vascular permeability, angiogenesis, and vasodilatation. The proangiogenic VEGF-A165a isoform is neuroprotective in hippocampal, dorsal root ganglia, and retinal neurons, but its propermeability, vasodilatatory, and angiogenic properties limit its therapeutic usefulness. In contrast, a neuroprotective effect of endogenous VEGF-A165b on neurons would be advantageous for neurodegenerative pathologies. Endogenous expression of human and rat VEGF-A165b was detected in hippocampal and cortical neurons. VEGF-A165b formed a significant proportion of total VEGF-A in rat brain. Recombinant human VEGF-A165b exerted neuroprotective effects in response to multiple insults, including glutamatergic excitotoxicity in hippocampal neurons, chemotherapy-induced cytotoxicity of dorsal root ganglion neurons, and retinal ganglion cells (RGCs) in rat retinal ischemia-reperfusion injury in vivo. Neuroprotection was dependent on VEGFR2 and MEK1/2 activation but not on p38 or phosphatidylinositol 3-kinase activation. Recombinant human VEGF-A165b is a neuroprotective agent that effectively protects both peripheral and central neurons in vivo and in vitro through VEGFR2, MEK1/2, and inhibition of caspase-3 induction. VEGF-A165b may be therapeutically useful for pathologies that involve neuronal damage, including hippocampal neurodegeneration, glaucoma diabetic retinopathy, and peripheral neuropathy. The endogenous nature of VEGF-A165b expression suggests that non-isoform-specific inhibition of VEGF-A (for antiangiogenic reasons) may be damaging to retinal and sensory neurons.


Subject(s)
Alternative Splicing/genetics , Neuroprotective Agents/metabolism , Vascular Endothelial Growth Factor A/metabolism , Alternative Splicing/drug effects , Animals , Cytoprotection/drug effects , Ganglia, Spinal/pathology , Glutamic Acid/toxicity , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Male , Mice , Neuroprotective Agents/pharmacology , Neurotoxins/toxicity , Protein Isoforms , Rats , Rats, Wistar , Retinal Neurons/drug effects , Retinal Neurons/pathology , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
14.
Invest Ophthalmol Vis Sci ; 51(8): 4273-81, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20237249

ABSTRACT

PURPOSE: A number of key ocular diseases, including diabetic retinopathy and age-related macular degeneration, are characterized by localized areas of epithelial or endothelial damage, which can ultimately result in the growth of fragile new blood vessels, vitreous hemorrhage, and retinal detachment. VEGF-A(165), the principal neovascular agent in ocular angiogenic conditions, is formed by proximal splice site selection in its terminal exon 8. Alternative splicing of this exon results in an antiangiogenic isoform, VEGF-A(165)b, which is downregulated in diabetic retinopathy. Here the authors investigate the antiangiogenic activity of VEGF(165)b and its effect on retinal epithelial and endothelial cell survival. METHODS: VEGF-A(165)b was injected intraocularly in a mouse model of retinal neovascularization (oxygen-induced retinopathy [OIR]). Cytotoxicity and cell migration assays were used to determine the effect of VEGF-A(165)b. RESULTS: VEGF-A(165)b dose dependently inhibited angiogenesis (IC(50), 12.6 pg/eye) and retinal endothelial migration induced by 1 nM VEGF-A(165) across monolayers in culture (IC(50), 1 nM). However, it also acts as a survival factor for endothelial cells and retinal epithelial cells through VEGFR2 and can stimulate downstream signaling. Furthermore, VEGF-A(165)b injection, while inhibiting neovascular proliferation in the eye, reduced the ischemic insult in OIR (IC(50), 2.6 pg/eye). Unlike bevacizumab, pegaptanib did not interact directly with VEGF-A(165)b. CONCLUSIONS: The survival effects of VEGF-A(165)b signaling can protect the retina from ischemic damage. These results suggest that VEGF-A(165)b may be a useful therapeutic agent in ischemia-induced angiogenesis and a cytoprotective agent for retinal pigment epithelial cells.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Cell Movement/drug effects , Disease Models, Animal , Endothelium, Vascular/drug effects , Retinal Neovascularization/prevention & control , Vascular Endothelial Growth Factor A/pharmacology , Animals , Animals, Newborn , Aptamers, Nucleotide/therapeutic use , Cell Survival/drug effects , Cells, Cultured , Cytoprotection , Dose-Response Relationship, Drug , Drug Interactions , Epithelial Cells/drug effects , Half-Life , Humans , Insulin-Like Growth Factor Binding Protein 3 , Insulin-Like Growth Factor Binding Proteins/metabolism , Mice , Mice, Inbred C57BL , Rats , Recombinant Proteins/pharmacology , Retinal Neovascularization/metabolism , Retinal Vessels/cytology , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...