Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Med Biol ; 68(9)2023 04 25.
Article in English | MEDLINE | ID: mdl-36990097

ABSTRACT

Objective. The purpose of this study is to assess its human images and its unique capabilities such as the 'on demand' higher spatial resolution and multi-spectral imaging of photon-counting-detector (PCD)-CT.Approach. In this study, the FDA 510(k) cleared mobile PCD-CT (OmniTom Elite) was used. To this end, we imaged internationally certified CT phantoms and a human cadaver head to evaluate the feasibility of high resolution (HR) and multi-energy imaging. We also demonstrate the performance of PCD-CT via first-in-human imaging by scanning three human volunteers.Main results. At the 5 mm slice thickness, routinely used in diagnostic head CT, the first human PCD-CT images were diagnostically equivalent to the EID-CT scanner. The HR acquisition mode of PCD-CT achieved a resolution of 11 line-pairs (lp)/cm as compared to 7 lp cm-1using the same kernel (posterior fossa-kernel) in the standard acquisition mode of EID-CT. For the quantitative multi-energy CT performance, the measured CT numbers in virtual mono-energetic images (VMI) of iodine inserts in the Gammex Multi-Energy CT phantom (model 1492, Sun Nuclear Corporation, USA) matched the manufacturer reference values with mean percent error of 3.25%. Multi-energy decomposition with PCD-CT demonstrated the separation and quantification of iodine, calcium, and water.Significance. PCD-CT can achieve multi-resolution acquisition modes without physically changing the CT detector. It can provide superior spatial resolution compared with the standard acquisition mode the conventional mobile EID-CT. Quantitative spectral capability of PCD-CT can provide accurate, simultaneous multi-energy images for material decomposition and VMI generation using a single exposure.


Subject(s)
Iodine , Photons , Humans , Tomography, X-Ray Computed/methods , Tomography Scanners, X-Ray Computed , Head , Phantoms, Imaging
2.
Phys Med Biol ; 66(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33647890

ABSTRACT

In x-ray CT imaging, the existence of metal in the imaging field of view deteriorates the quality of the reconstructed image. This is because rays penetrating dense metal implants are highly corrupted, causing huge inconsistency between projection data. The result appears as strong artifacts such as black and white streaks on the reconstructed image disturbing correct diagnosis. For several decades, there have been various trials to reduce metal artifacts for better image quality. As the computing power of computer processors became more powerful, more complex algorithms with improved performance have been introduced. For instance, the initially developed metal artifact reduction (MAR) algorithms based on simple sinogram interpolation were combined with computationally expensive iterative reconstruction techniques to pursue better image quality. Recently, even machine learning based techniques have been introduced, which require huge amounts of computations for training. In this paper, we introduce an image based novel MAR algorithm in which severe metal artifacts such as black shadings are detected by the proposed method in a straightforward manner based on a linear interpolation. To do that, a new concept of metal artifact classification is devised using linear interpolation in the virtual projection domain. The proposed method reduces severe artifacts very quickly and effectively and has good performance to keep the detailed body structure preserved. Results of qualitative and quantitative comparisons with other representative algorithms such as LIMAR and NMAR support the excellence of the proposed algorithm. Thanks to the nature of reducing artifacts in the image itself and its low computational cost, the proposed algorithm can function as an initial image generator for other MAR algorithms, as well as being integrated in the modalities under limited computation power such as mobile CT scanners.


Subject(s)
Artifacts , Algorithms , Phantoms, Imaging , Tomography, X-Ray Computed , X-Rays
3.
J Med Imaging (Bellingham) ; 6(4): 047002, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31737746

ABSTRACT

Tomographic image reconstruction requires precise geometric measurements and calibration for the scanning system to yield optimal images. The isocenter offset is a very important geometric parameter that directly governs the spatial resolution of reconstructed images. Due to system imperfections such as mechanical misalignment, an accurate isocenter offset is difficult to achieve. Common calibration procedures used during isocenter offset tuning, such as pin scan, are not able to reach precision of subpixel level and are also inevitably hampered by system imperfections. We propose a purely data-driven method based on Fourier shift theorem to indirectly, yet precisely, estimate the isocenter offset at the subpixel level. The solution is obtained by applying a generalized M-estimator, a robust regression algorithm, to an arbitrary sinogram of axial scanning geometry. Numerical experiments are conducted on both simulated phantom data and actual data using a tungsten wire. Simulation results reveal that the proposed method achieves great accuracy on estimating and tuning the isocenter offset, which, in turn, significantly improves the quality of final images, particularly in spatial resolution.

SELECTION OF CITATIONS
SEARCH DETAIL