Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
NPJ Vaccines ; 9(1): 67, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553525

ABSTRACT

Ebola virus disease (EVD) is a filoviral infection caused by virus species of the Ebolavirus genus including Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). We investigated the safety and immunogenicity of a heterologous prime-boost regimen involving a chimpanzee adenovirus 3 vectored Ebola vaccine [either monovalent (cAd3-EBOZ) or bivalent (cAd3-EBO)] prime followed by a recombinant modified vaccinia virus Ankara EBOV vaccine (MVA-EbolaZ) boost in two phase 1/1b randomized open-label clinical trials in healthy adults in the United States (US) and Uganda (UG). Trial US (NCT02408913) enrolled 140 participants, including 26 EVD vaccine-naïve and 114 cAd3-Ebola-experienced participants (April-November 2015). Trial UG (NCT02354404) enrolled 90 participants, including 60 EVD vaccine-naïve and 30 DNA Ebola vaccine-experienced participants (February-April 2015). All tested vaccines and regimens were safe and well tolerated with no serious adverse events reported related to study products. Solicited local and systemic reactogenicity was mostly mild to moderate in severity. The heterologous prime-boost regimen was immunogenic, including induction of durable antibody responses which peaked as early as two weeks and persisted up to one year after each vaccination. Different prime-boost intervals impacted the magnitude of humoral and cellular immune responses. The results from these studies demonstrate promising implications for use of these vaccines in both prophylactic and outbreak settings.

2.
J Infect Dis ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38019956

ABSTRACT

BACKGROUND: A controlled human infection model for assessing tuberculosis (TB) immunity can accelerate new vaccine development. METHODS: In this phase 1 dose escalation trial, 92 healthy adults received a single intradermal injection of 2 × 106 to 16 × 106 colony-forming units of Bacillus Calmette-Guérin (BCG). The primary endpoints were safety and BCG shedding as measured by quantitative polymerase chain reaction, colony-forming unit plating, and MGIT BACTEC culture. RESULTS: Doses up to 8 × 106 were safe, and there was evidence for increased BCG shedding with dose escalation. The MGIT time-to-positivity assay was the most consistent and precise measure of shedding. Power analyses indicated that 10% differences in MGIT time to positivity (area under the curve) could be detected in small cohorts (n = 30). Potential biomarkers of mycobacterial immunity were identified that correlated with shedding. Transcriptomic analysis uncovered dose- and time-dependent effects of BCG challenge and identified a putative transcriptional TB protective signature. Furthermore, we identified immunologic and transcriptomal differences that could represent an immune component underlying the observed higher rate of TB disease incidence in males. CONCLUSIONS: The safety, reactogenicity, and immunogenicity profiles indicate that this BCG human challenge model is feasible for assessing in vivo TB immunity and could facilitate the vaccine development process. CLINICAL TRIALS REGISTRATION: NCT01868464 (ClinicalTrials.gov).

3.
Vaccine ; 40(49): 7065-7072, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36273986

ABSTRACT

BACKGROUND: Unadjuvanted A/H7N9 vaccines are poorly immunogenic. The immune response is improved with the addition of MF59, an oil-in-water adjuvant. However, the cellular immunologic responses of MF59-adjuvanted A/H7N9 vaccine are not fully understood. METHODS: 37 participants were vaccinated with 2 doses of 2013 influenza A/H7N9 vaccine (at Days 1 and 21) with or without MF59 and enrolled in an immunology substudy. Responses were assessed at multiple timepoints (Days 0, 8, 21, 29, and 42) for hemagglutination inhibition (HAI) and neutralizing antibody (Neut) assays, memory B cell responses by enzyme-linked ImmunoSpot; circulating follicular helper T cells (cTFH) and CD4 + T cells by intracellular cytokine staining. RESULTS: MF59-adjuvanted influenza A/H7N9 vaccine induced significantly higher hemagglutination inhibition (HAI) and neutralizing antibody (Neut) responses when compared to unadjuvanted vaccine. The adjuvanted vaccine elicited significantly higher levels of Inducible T-cell Co-Stimulator (ICOS) expression by CXCR3+CXCR5+CD4+ cTFH cells, compared to unadjuvanted vaccine. The magnitude of increase in cTFH cells (from baseline to Day 8) and in IL-21 expressing CD154+CD4+ T cells (from baseline to Days 8 and 21) correlated with HAI (at Day 29) and Neut antibody (at Days 8 and 29) titers. The increase in frequency of IL-21 expressing CD154+CD4+T cells (from baseline to Day 21) correlated with memory B cell frequency (at Day 42). CONCLUSION: cTFH activation is associated with HAI and Neut responses in recipients of MF59-adjuvanted influenza A/H7N9 vaccine relative to unadjuvanted vaccine. Future studies should focus on optimizing the cTFH response and use cTFH as an early biomarker of serological response to vaccination. This trial was registered at clinicaltrials.gov, trial number NCT01938742.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Humans , Antibody Formation , Influenza, Human/prevention & control , Antibodies, Viral , Squalene , Polysorbates , Adjuvants, Immunologic , Hemagglutination Inhibition Tests , Antibodies, Neutralizing , Water
4.
N Engl J Med ; 387(5): 397-407, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35921449

ABSTRACT

BACKGROUND: New approaches for the prevention and elimination of malaria, a leading cause of illness and death among infants and young children globally, are needed. METHODS: We conducted a phase 1 clinical trial to assess the safety and pharmacokinetics of L9LS, a next-generation antimalarial monoclonal antibody, and its protective efficacy against controlled human malaria infection in healthy adults who had never had malaria or received a vaccine for malaria. The participants received L9LS either intravenously or subcutaneously at a dose of 1 mg, 5 mg, or 20 mg per kilogram of body weight. Within 2 to 6 weeks after the administration of L9LS, both the participants who received L9LS and the control participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying Plasmodium falciparum (3D7 strain). RESULTS: No safety concerns were identified. L9LS had an estimated half-life of 56 days, and it had dose linearity, with the highest mean (±SD) maximum serum concentration (Cmax) of 914.2±146.5 µg per milliliter observed in participants who had received 20 mg per kilogram intravenously and the lowest mean Cmax of 41.5±4.7 µg per milliliter observed in those who had received 1 mg per kilogram intravenously; the mean Cmax was 164.8±31.1 in the participants who had received 5 mg per kilogram intravenously and 68.9±22.3 in those who had received 5 mg per kilogram subcutaneously. A total of 17 L9LS recipients and 6 control participants underwent controlled human malaria infection. Of the 17 participants who received a single dose of L9LS, 15 (88%) were protected after controlled human malaria infection. Parasitemia did not develop in any of the participants who received 5 or 20 mg per kilogram of intravenous L9LS. Parasitemia developed in 1 of 5 participants who received 1 mg per kilogram intravenously, 1 of 5 participants who received 5 mg per kilogram subcutaneously, and all 6 control participants through 21 days after the controlled human malaria infection. Protection conferred by L9LS was seen at serum concentrations as low as 9.2 µg per milliliter. CONCLUSIONS: In this small trial, L9LS administered intravenously or subcutaneously protected recipients against malaria after controlled infection, without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 614 ClinicalTrials.gov number, NCT05019729.).


Subject(s)
Antibodies, Monoclonal , Malaria , Administration, Cutaneous , Administration, Intravenous , Adult , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Child , Child, Preschool , Humans , Malaria/prevention & control , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Parasitemia/parasitology , Plasmodium falciparum
5.
J Infect Dis ; 226(10): 1771-1780, 2022 11 11.
Article in English | MEDLINE | ID: mdl-35137154

ABSTRACT

BACKGROUND: Genogroup II noroviruses are the most common cause of acute infectious gastroenteritis. We evaluated the use of a new GII.2 inoculum in a human challenge. METHODS: Forty-four healthy adults (36 secretor-positive and 8 secretor-negative for histo-blood group antigens) were challenged with ascending doses of a new safety-tested Snow Mountain virus (SMV) GII.2 norovirus inoculum (1.2 × 104 to 1.2 × 107 genome equivalent copies [GEC]; n = 38) or placebo (n = 6). Illness was defined as diarrhea and/or vomiting postchallenge in subjects with evidence of infection (defined as GII.2 norovirus RNA detection in stool and/or anti-SMV immunoglobulin G [IgG] seroconversion). RESULTS: The highest dose was associated with SMV infection in 90%, and illness in 70% of subjects with 10 of 12 secretor-positive (83%) and 4 of 8 secretor-negative (50%) becoming ill. There was no association between prechallenge anti-SMV serum IgG concentration, carbohydrate-binding blockade antibody, or salivary immunoglobulin A and infection. The median infectious dose (ID50) was 5.1 × 105 GEC. CONCLUSIONS: High rates of infection and illness were observed in both secretor-positive and secretor-negative subjects in this challenge study. However, a high dose will be required to achieve the target of 75% illness to make this an efficient model for evaluating potential norovirus vaccines and therapeutics. CLINICAL TRIALS REGISTRATION: NCT02473224.


Subject(s)
Caliciviridae Infections , Gastroenteritis , Norovirus , Adult , Humans , Norovirus/genetics , Diarrhea , Genotype , Immunoglobulin G
6.
Vaccines (Basel) ; 8(3)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32629943

ABSTRACT

Human papillomavirus virus (HPV) vaccines aim to provide durable protection and are ideal to study the association of cellular with humoral responses. We assessed the duration and characteristics of immune responses provided by the quadrivalent HPV (4vHPV) vaccine in healthy female adults with or without prior exposure with type 16 and 18 HPV. In a prospective cohort, vaccine naïve females received three doses of 4vHPV vaccine and were followed for two years to assess cellular (intracellular cytokine staining, proliferation and B cell ELISpot assays) and humoral (multiplex L1/L2 viral-like particles (VLP) and M4 ELISAs) responses. Frequencies of vaccine-specific CD4+ T cells correlated with antibody responses. Higher HPV antibody titers were found at all time points in participants previously exposed to HPV, except for anti-HPV-18 at Day 187 (one week post the third vaccination). Retrospective cohorts enrolled females who had previously received two or three 4vHPV doses and tested antibody titers by M4 ELISA and pseudovirion neutralization assay along with memory B cells (MBCs). Almost all women enrolled in a retrospective cohort with two prior doses and all women enrolled in a retrospective cohort with three prior doses had sustained antibody and memory responses. Our findings indicate that HPV vaccination induces a long-lasting, robust cellular and humoral immune responses.

7.
JAMA ; 323(14): 1369-1377, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286643

ABSTRACT

Importance: Chikungunya virus (CHIKV) is a mosquito-borne Alphavirus prevalent worldwide. There are currently no licensed vaccines or therapies. Objective: To evaluate the safety and tolerability of an investigational CHIKV virus-like particle (VLP) vaccine in endemic regions. Design, Setting, and Participants: This was a randomized, placebo-controlled, double-blind, phase 2 clinical trial to assess the vaccine VRC-CHKVLP059-00-VP (CHIKV VLP). The trial was conducted at 6 outpatient clinical research sites located in Haiti, Dominican Republic, Martinique, Guadeloupe, and Puerto Rico. A total of 400 healthy adults aged 18 through 60 years were enrolled after meeting eligibility criteria. The first study enrollment occurred on November 18, 2015; the final study visit, March 6, 2018. Interventions: Participants were randomized 1:1 to receive 2 intramuscular injections 28 days apart (20 µg, n = 201) or placebo (n = 199) and were followed up for 72 weeks. Main Outcomes and Measures: The primary outcome was the safety (laboratory parameters, adverse events, and CHIKV infection) and tolerability (local and systemic reactogenicity) of the vaccine, and the secondary outcome was immune response by neutralization assay 4 weeks after second vaccination. Results: Of the 400 randomized participants (mean age, 35 years; 199 [50%] women), 393 (98%) completed the primary safety analysis. All injections were well tolerated. Of the 16 serious adverse events unrelated to the study drugs, 4 (25%) occurred among 4 patients in the vaccine group and 12 (75%) occurred among 11 patients in the placebo group. Of the 16 mild to moderate unsolicited adverse events that were potentially related to the drug, 12 (75%) occurred among 8 patients in the vaccine group and 4 (25%) occurred among 3 patients in the placebo group. All potentially related adverse events resolved without clinical sequelae. At baseline, there was no significant difference between the effective concentration (EC50)-which is the dilution of sera that inhibits 50% infection in viral neutralization assay-geometric mean titers (GMTs) of neutralizing antibodies of the vaccine group (46; 95% CI, 34-63) and the placebo group (43; 95% CI, 32-57). Eight weeks following the first administration, the EC50 GMT in the vaccine group was 2005 (95% CI, 1680-2392) vs 43 (95% CI, 32-58; P < .001) in the placebo group. Durability of the immune response was demonstrated through 72 weeks after vaccination. Conclusions and Relevance: Among healthy adults in a chikungunya endemic population, a virus-like particle vaccine compared with placebo demonstrated safety and tolerability. Phase 3 trials are needed to assess clinical efficacy. Trial Registration: ClinicalTrials.gov Identifier: NCT02562482.


Subject(s)
Chikungunya Fever/prevention & control , Chikungunya virus/immunology , Vaccines, Virus-Like Particle/adverse effects , Viral Vaccines/adverse effects , Adolescent , Adult , Antibodies, Neutralizing/blood , Chikungunya Fever/immunology , Double-Blind Method , Female , Humans , Injections, Intramuscular , Male , Middle Aged , Neutralization Tests , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Young Adult
8.
Article in English | MEDLINE | ID: mdl-31285228

ABSTRACT

Filociclovir (MBX-400, cyclopropavir) is an antiviral agent with activity against cytomegalovirus (CMV). A phase 1, double-blind, randomized, placebo-controlled (3:1 ratio), single-center, multiple-ascending-dose trial was conducted to assess the safety, tolerability, and pharmacokinetics of filociclovir. Filociclovir (n = 18) or placebo (n = 6) was administered as a daily oral dose (100 mg, 350 mg, or 750 mg) for 7 days to normal healthy adults (ages, 25 to 65 years) who were monitored for 22 days. Safety assessments included clinical, laboratory, and electrocardiogram monitoring. Plasma and urine samplings were used to determine pharmacokinetic parameters. All study product-related adverse events were mild, most commonly gastrointestinal (17%), nervous system (11%), and skin and subcutaneous tissue (11%) disorders. One subject had reversible grade 3 elevation in serum creatinine and bilirubin, which was associated with an ∼1-log increase in plasma filociclovir exposure compared to levels for other subjects in the same (750-mg) cohort. No other serious adverse events were observed. Plasma exposures (area under the concentration-time curve from 0 to 24 h [AUC0-24]) on days 1 and 7 were similar, suggesting negligible dose accumulation. There was a sublinear increase in plasma exposure with dose, which plateaued at the daily dose of 350 mg. The amount of filociclovir recovered in the urine remained proportional to plasma exposure (AUC). Doses as low as 100 mg achieved plasma concentrations sufficient to inhibit CMV in vitro (This study has been registered at ClinicalTrials.gov under identifier NCT02454699.).


Subject(s)
Antiviral Agents/adverse effects , Antiviral Agents/pharmacokinetics , Cytomegalovirus/drug effects , Adult , Aged , Antiviral Agents/blood , Antiviral Agents/therapeutic use , Cytomegalovirus/pathogenicity , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Female , Half-Life , Healthy Volunteers , Humans , Male , Middle Aged
9.
R Soc Open Sci ; 5(8): 172167, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30224989

ABSTRACT

Hepatitis C virus (HCV) and B virus (HBV) infections are highly prevalent, with a high percentage of undiagnosed cases. Knowledge of HCV and its modes of transmission are essential for disease prevention and management. We studied a high-risk New Zealand gang population on viral hepatitis prevalence, their level of knowledge and the liver health risk factors in a community setting. Participants completed demographic, risk factor and knowledge questionnaires in three health meetings in New Zealand. Participants' blood samples were tested for HBV, HCV, biochemical indicators of liver disease. Liver fibrosis levels were assessed using a Fibroscan® device. We studied 52 adult Mongrel Mob members, affiliates and whanau (extended family) throughout New Zealand. We identified no HCV and two HBV cases, confirmed high-risk factor levels and poor associated knowledge, with a significant association between lack of knowledge and presence of specific risk factors. We successfully conducted a community-focused, high-risk, hard-to-reach gang population study, and found a link between lack of knowledge and risk factors for HCV infection. This study provided first-of-its-kind data on viral hepatitis in a gang population and demonstrated the need for educational screening programmes to aid early HCV detection, prevention and treatment.

10.
J Immunol ; 200(8): 3008-3019, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29540577

ABSTRACT

Antigen-specific CD4 and CD8 T cells are important components of the immune response to Mycobacterium tuberculosis, yet little information is currently known regarding how the breadth, specificity, phenotype, and function of M. tuberculosis-specific T cells correlate with M. tuberculosis infection outcome in humans. To facilitate evaluation of human M. tuberculosis-specific T cell responses targeting multiple different Ags, we sought to develop a high throughput and reproducible T cell response spectrum assay requiring low blood sample volumes. We describe here the optimization and standardization of a microtiter plate-based, diluted whole blood stimulation assay utilizing overlapping peptide pools corresponding to a functionally diverse panel of 60 M. tuberculosis Ags. Using IFN-γ production as a readout of Ag specificity, the assay can be conducted using 50 µl of blood per test condition and can be expanded to accommodate additional Ags. We evaluated the intra- and interassay variability, and implemented testing of the assay in diverse cohorts of M. tuberculosis-unexposed healthy adults, foreign-born adults with latent M. tuberculosis infection residing in the United States, and tuberculosis household contacts with latent M. tuberculosis infection in a tuberculosis-endemic setting in Kenya. The M. tuberculosis-specific T cell response spectrum assay further enhances the immunological toolkit available for evaluating M. tuberculosis-specific T cell responses across different states of M. tuberculosis infection, and can be readily implemented in resource-limited settings. Moreover, application of the assay to longitudinal cohorts will facilitate evaluation of treatment- or vaccine-induced changes in the breadth and specificity of Ag-specific T cell responses, as well as identification of M. tuberculosis-specific T cell responses associated with M. tuberculosis infection outcomes.


Subject(s)
Hematologic Tests/methods , High-Throughput Screening Assays/methods , T-Lymphocytes/immunology , Tuberculosis/blood , Tuberculosis/immunology , Cross-Sectional Studies , Humans , Immunologic Techniques/methods , Longitudinal Studies , Reproducibility of Results
11.
Clin Infect Dis ; 66(1): 1-10, 2018 01 06.
Article in English | MEDLINE | ID: mdl-29020226

ABSTRACT

Background: There is an urgent need for studies of viral persistence and immunity during human Zika infections to inform planning and conduct of vaccine clinical trials. Methods: In 5 returned US travelers with acute symptomatic Zika infection, clinical features, viral RNA levels, and immune responses were characterized. Results: Two pregnant, flavivirus-experienced patients had viral RNA persist in plasma for >44 and >26 days. Three days after symptom onset, transient increases in proinflammatory monocytes began followed at 5 days by transient decreases in myeloid dendritic cells. Anti-Zika virus immunoglobulin M was detected at day 7 after symptom onset, persisted beyond 103 days, and remained equivocal through day 172. Zika virus-specific plasmablasts and neutralizing antibodies developed quickly; dengue virus-specific plasmablasts and neutralizing antibodies at high titers developed only in flavivirus-experienced patients. Zika virus- and dengue virus-specific memory B cells developed in both flavivirus-naive and -experienced patients. CD4+ T cells were moderately activated and produced antiviral cytokines after stimulation with Zika virus C, prM, E, and NS5 peptides in 4/4 patients. In contrast, CD8+ T cells were massively activated, but virus-specific cells that produced cytokines were present in only 2/4 patients assessed. Conclusions: Acute infections with Zika virus modulated antigen-presenting cell populations early. Flavivirus-experienced patients quickly recalled cross-reactive MBCs to secrete antibodies. Dengue virus-naive patients made little dengue-specific antibody but developed MBCs that cross-reacted against dengue virus. Zika virus-specific functional CD4+ T cells were readily detected, but few CD8+ T cells specific for the tested peptides were found.


Subject(s)
Adaptive Immunity , B-Lymphocytes/immunology , Immunity, Innate , T-Lymphocyte Subsets/immunology , Zika Virus Infection/immunology , Zika Virus Infection/pathology , Zika Virus/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Female , Humans , Immunoglobulin M/blood , Male , Pregnancy , RNA, Viral/blood , Time Factors , Viral Load , Zika Virus Infection/virology
12.
Vaccine ; 35(36): 4730-4737, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28750854

ABSTRACT

BACKGROUND: Tularemia is caused by Francisella tularensis, a gram-negative bacterium that has been weaponized as an aerosol. For protection of personnel conducting biodefense research, the United States Army required clinical evaluation of a new lot of tularemia live vaccine strain manufactured in accordance with Current Good Manufacturing Practices. METHODS: A phase 2 randomized clinical trial compared the new lot (DVC-LVS) to the existing vaccine that has been in use for decades (USAMRIID-LVS). The vaccines were delivered by scarification to 228 participants. Safety, reactogenicity, take and/or antibody levels were assessed on days 0, 1, 2, 8, 14, 28, 56, and 180. PRINCIPAL RESULTS: Both vaccines were safe and had acceptable reactogenicity profiles during six months of follow-up. There were no serious or grade 3 and 4 laboratory adverse events. Moderate systemic reactogenicity (mostly headache or feeling tired) was reported by ∼23% of participants receiving either vaccine. Injection site reactogenicity was mostly mild itchiness and pain. The frequencies of vaccine take skin reactions were 73% (95% CI, 64, 81) for DVC-LVS and 80% (95% CI, 71, 87) for USAMRIID-LVS. The 90% CI for the difference in proportions was -6.9% (-16.4, 2.6). The rates of seroconversion measured by microagglutination assay on days 28 or 56 were 94% (95% CI, 88, 98; n=98/104) for DVC-LVS and 94% (95% CI, 87, 97; n=103/110) for USAMRIID-LVS (p=1.00). Day 14 sera revealed more rapid seroconversion for DVC-LVS relative to USAMRIID-LVS: 82% (95% CI, 73, 89) versus 55% (95% CI, 45, 65), respectively (p<0.0001). MAJOR CONCLUSIONS: The DVC-LVS vaccine had similar safety, reactogenicity, take and antibody responses compared to the older USAMRIID vaccine, and was superior for early (day 14) antibody production. Vaccination take was not a sensitive surrogate for seroconversion in a multi-center study where personnel at five research clinics performed assessments. ClinicalTrials.gov identifier NCT01150695.


Subject(s)
Antibodies, Bacterial/blood , Bacterial Vaccines/adverse effects , Bacterial Vaccines/immunology , Francisella tularensis/immunology , Tularemia/prevention & control , Adolescent , Adult , Agglutination Tests , Bacterial Vaccines/administration & dosage , Double-Blind Method , Female , Humans , Male , Middle Aged , Seroconversion , Tularemia/immunology , Vaccination , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/immunology , Young Adult
13.
Clin Infect Dis ; 63(3): 376-9, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27118786

ABSTRACT

From September 2014 to April 2015, 6 persons who had occupational exposures to Zaire ebolavirus in West Africa received investigational agent rVSV-ZEBOV or TKM-100802 for postexposure prophylaxis and were monitored in the United States. All patients experienced self-limited symptoms after postexposure prophylaxis; none developed Ebola virus disease.


Subject(s)
Ebolavirus/physiology , Hemorrhagic Fever, Ebola/prevention & control , Occupational Exposure , Adult , Africa, Western , Female , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/virology , Humans , Male , Middle Aged , Post-Exposure Prophylaxis , Retrospective Studies , United States
14.
JAMA ; 313(12): 1249-55, 2015.
Article in English | MEDLINE | ID: mdl-25742465

ABSTRACT

IMPORTANCE: Safe and effective vaccines and drugs are needed for the prevention and treatment of Ebola virus disease, including following a potentially high-risk exposure such as a needlestick. OBJECTIVE: To assess response to postexposure vaccination in a health care worker who was exposed to the Ebola virus. DESIGN AND SETTING: Case report of a physician who experienced a needlestick while working in an Ebola treatment unit in Sierra Leone on September 26, 2014. Medical evacuation to the United States was rapidly initiated. Given the concern about potentially lethal Ebola virus disease, the patient was offered, and provided his consent for, postexposure vaccination with an experimental vaccine available through an emergency Investigational New Drug application. He was vaccinated on September 28, 2014. INTERVENTIONS: The vaccine used was VSVΔG-ZEBOV, a replicating, attenuated, recombinant vesicular stomatitis virus (serotype Indiana) whose surface glycoprotein gene was replaced by the Zaire Ebola virus glycoprotein gene. This vaccine has entered a clinical trial for the prevention of Ebola in West Africa. RESULTS: The vaccine was administered 43 hours after the needlestick occurred. Fever and moderate to severe symptoms developed 12 hours after vaccination and diminished over 3 to 4 days. The real-time reverse transcription polymerase chain reaction results were transiently positive for vesicular stomatitis virus nucleoprotein gene and Ebola virus glycoprotein gene (both included in the vaccine) but consistently negative for Ebola virus nucleoprotein gene (not in the vaccine). Early postvaccination cytokine secretion and T lymphocyte and plasmablast activation were detected. Subsequently, Ebola virus glycoprotein-specific antibodies and T cells became detectable, but antibodies against Ebola viral matrix protein 40 (not in the vaccine) were not detected. CONCLUSIONS AND RELEVANCE: It is unknown if VSVΔG-ZEBOV is safe or effective for postexposure vaccination in humans who have experienced a high-risk occupational exposure to the Ebola virus, such as a needlestick. In this patient, postexposure vaccination with VSVΔG-ZEBOV induced a self-limited febrile syndrome that was associated with transient detection of the recombinant vesicular stomatitis vaccine virus in blood. Strong innate and Ebola-specific adaptive immune responses were detected after vaccination. The clinical syndrome and laboratory evidence were consistent with vaccination response, and no evidence of Ebola virus infection was detected.


Subject(s)
Ebola Vaccines/therapeutic use , Hemorrhagic Fever, Ebola/prevention & control , Needlestick Injuries/complications , Post-Exposure Prophylaxis , Adult , Ebola Vaccines/adverse effects , Ebolavirus/genetics , Ebolavirus/immunology , Fever/etiology , Genetic Vectors , Hemorrhagic Fever, Ebola/transmission , Humans , Male , Physicians , Sierra Leone , Vaccination , Vesiculovirus
15.
Open Forum Infect Dis ; 1(3): ofu102, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25734170

ABSTRACT

BACKGROUND: Avian influenza A/H5N1 has threatened human health for nearly 2 decades. Avian influenza A vaccine without adjuvant is poorly immunogenic. A flexible rapid tactic for mass vaccination will be needed if a pandemic occurs. METHODS: A multicenter, randomized, blinded phase 1 clinical trial evaluated safety and antibody responses after point-of-use mixing of influenza A/Indonesia/05/2005 (H5N1) vaccine with MF59 adjuvant. Field-site pharmacies mixed 3.75, 7.5, or 15 mcg of antigen with or without MF59 adjuvant just prior to intramuscular administration on days 0 and 21 of healthy adults aged 18-49 years. RESULTS: Two hundred and seventy subjects were enrolled. After vaccination, titers of hemagglutination inhibition antibody ≥1:40 were achieved in 80% of subjects receiving 3.75 mcg + MF59 vs only 14% receiving 15 mcg without adjuvant (P < .0001). Peak hemagglutination inhibition antibody geometric mean titers for vaccine + MF59 were ∼65 regardless of antigen dose, and neutralizing titers were 2- to 3-fold higher. Vaccine + MF59 produced cross-reactive antibody responses against 4 heterologous H5N1 viruses. Excellent safety and tolerability were demonstrated. CONCLUSIONS: Point-of-use mixing of H5N1 antigen and MF59 adjuvant achieved target antibody titers in a high percentage of subjects and was safe. The feasibility of the point-of-use mixing should be studied further.

16.
Percept Mot Skills ; 96(2): 623-4, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12776845

ABSTRACT

Previous research has demonstrated the potential for the use of ambient sensory conditions to improve cognitive functioning. Both light and sound have been shown to improve task performance in various populations including children, younger adults, and elderly participants; however, these cognitive gains may possibly be offset by detrimental cardiovascular reactivity in elderly persons. We now have some evidence for ambient sensory conditions affecting cognitive function following left- or right-side cerebrovascular accidents.


Subject(s)
Aphasia, Wernicke/etiology , Aphasia, Wernicke/therapy , Cognition Disorders/therapy , Environment , Functional Laterality , Phototherapy , Cerebrovascular Disorders/complications , Cognition Disorders/etiology , Humans , Sound
SELECTION OF CITATIONS
SEARCH DETAIL
...