Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Cancer Res Commun ; 4(4): 1150-1164, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38598843

ABSTRACT

Multiple myeloma involves early dissemination of malignant plasma cells across the bone marrow; however, the initial steps of dissemination remain unclear. Human bone marrow-derived mesenchymal stromal cells (hMSC) stimulate myeloma cell expansion (e.g., IL6) and simultaneously retain myeloma cells via chemokines (e.g., CXCL12) and adhesion factors. Hence, we hypothesized that the imbalance between cell division and retention drives dissemination. We present an in vitro model using primary hMSCs cocultured with INA-6 myeloma cells. Time-lapse microscopy revealed proliferation and attachment/detachment dynamics. Separation techniques (V-well adhesion assay and well plate sandwich centrifugation) were established to isolate MSC-interacting myeloma subpopulations that were characterized by RNA sequencing, cell viability, and apoptosis. Results were correlated with gene expression data (n = 837) and survival of patients with myeloma (n = 536). On dispersed hMSCs, INA-6 saturate hMSC surface before proliferating into large homotypic aggregates, from which single cells detached completely. On confluent hMSCs, aggregates were replaced by strong heterotypic hMSC-INA-6 interactions, which modulated apoptosis time dependently. Only INA-6 daughter cells (nMA-INA6) detached from hMSCs by cell division but sustained adherence to hMSC-adhering mother cells (MA-INA6). Isolated nMA-INA6 indicated hMSC autonomy through superior viability after IL6 withdrawal and upregulation of proliferation-related genes. MA-INA6 upregulated adhesion and retention factors (CXCL12), that, intriguingly, were highly expressed in myeloma samples from patients with longer overall and progression-free survival, but their expression decreased in relapsed myeloma samples. Altogether, in vitro dissemination of INA-6 is driven by detaching daughter cells after a cycle of hMSC-(re)attachment and proliferation, involving adhesion factors that represent a bone marrow-retentive phenotype with potential clinical relevance. SIGNIFICANCE: Novel methods describe in vitro dissemination of myeloma cells as detachment of daughter cells after cell division. Myeloma adhesion genes were identified that counteract in vitro detachment with potential clinical relevance.


Subject(s)
Cell Adhesion , Cell Proliferation , Mesenchymal Stem Cells , Multiple Myeloma , Humans , Multiple Myeloma/pathology , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Apoptosis , Coculture Techniques , Cell Line, Tumor , Cell Aggregation , Cell Survival
2.
J Pathol Clin Res ; 10(2): e354, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38284983

ABSTRACT

This study analyzed whether extended molecular profiling can predict the development of epidermal growth factor receptor (EGFR) gene T790M mutation, which is the most frequent resistance alteration in non-small cell lung cancer (NSCLC) after treatment with the first-/second-generation (1G/2G) EGFR inhibitors (tyrosine kinase inhibitors [TKIs]), but only weakly associated with clinical characteristics. Whole exome sequencing (WES) was performed on pretreatment tumor tissue with matched normal samples from NSCLC patients with (n = 25, detected in tissue or blood rebiopsies) or without (n = 14, negative tissue rebiopsies only) subsequent EGFR p.T790M mutation after treatment with 1G/2G EGFR TKI. Several complex genetic biomarkers were assessed using bioinformatic methods. After treatment with first-line afatinib (44%) or erlotinib/gefitinib (56%), median progression-free survival and overall survival were 12.1 and 33.7 months, respectively. Clinical and tumor genetic characteristics, including age (median, 66 years), sex (74% female), smoking (69% never/light smokers), EGFR mutation type (72% exon 19 deletions), and TP53 mutations (41%) were not significantly associated with T790M mutation (p > 0.05). By contrast, complex biomarkers including tumor mutational burden, the clock-like mutation signature SBS1 + 5, tumor ploidy, and markers of subclonality including mutant-allele tumor heterogeneity, subclonal copy number changes, and median tumor-adjusted variant allele frequency were significantly higher at baseline in tumors with subsequent T790M mutation (all p < 0.05). Each marker alone could predict subsequent development of T790M with an area under the curve (AUC) of 0.72-0.77, but the small number of cases did not allow confirmation of better performance for biomarker combinations in leave-one-out cross-validated logistic regression (AUC 0.69, 95% confidence interval: 0.50-0.87). Extended molecular profiling with WES at initial diagnosis reveals several complex biomarkers associated with subsequent development of T790M resistance mutation in NSCLC patients receiving first-/second-generation TKIs as the first-line therapy. Larger prospective studies will be necessary to define a forecasting model.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Female , Aged , Male , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Prospective Studies , Mutation , Protein Kinase Inhibitors/therapeutic use , Genomics , Biomarkers
4.
Front Immunol ; 14: 1286700, 2023.
Article in English | MEDLINE | ID: mdl-38035078

ABSTRACT

Background: Immunotherapeutic targets in multiple myeloma (MM) have variable expression height and are partly expressed in subfractions of patients only. With increasing numbers of available compounds, strategies for appropriate choice of targets (combinations) are warranted. Simultaneously, risk assessment is advisable as patient's life expectancy varies between months and decades. Methods: We first assess feasibility of RNA-sequencing in a multicenter trial (GMMG-MM5, n=604 patients). Next, we use a clinical routine cohort of untreated symptomatic myeloma patients undergoing autologous stem cell transplantation (n=535, median follow-up (FU) 64 months) to perform RNA-sequencing, gene expression profiling (GEP), and iFISH by ten-probe panel on CD138-purified malignant plasma cells. We subsequently compare target expression to plasma cell precursors, MGUS (n=59), asymptomatic (n=142) and relapsed (n=69) myeloma patients, myeloma cell lines (n=26), and between longitudinal samples (MM vs. relapsed MM). Data are validated using the independent MMRF CoMMpass-cohort (n=767, FU 31 months). Results: RNA-sequencing is feasible in 90.8% of patients (GMMG-MM5). Actionable immune-oncological targets (n=19) can be divided in those expressed in all normal and >99% of MM-patients (CD38, SLAMF7, BCMA, GPRC5D, FCRH5, TACI, CD74, CD44, CD37, CD79B), those with expression loss in subfractions of MM-patients (BAFF-R [81.3%], CD19 [57.9%], CD20 [82.8%], CD22 [28.4%]), aberrantly expressed in MM (NY-ESO1/2 [12%], MUC1 [12.7%], CD30 [4.9%], mutated BRAF V600E/K [2.1%]), and resistance-conveying target-mutations e.g., against part but not all BCMA-directed treatments. Risk is assessable regarding proliferation, translated GEP- (UAMS70-, SKY92-, RS-score) and de novo (LfM-HRS) defined risk scores. LfM-HRS delineates three groups of 40%, 38%, and 22% of patients with 5-year and 12-year survival rates of 84% (49%), 67% (18%), and 32% (0%). R-ISS and RNA-sequencing identify partially overlapping patient populations, with R-ISS missing, e.g., 30% (22/72) of highly proliferative myeloma. Conclusion: RNA-sequencing based assessment of risk and targets for first choice treatment is possible in clinical routine.


Subject(s)
Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Humans , Multiple Myeloma/therapy , Multiple Myeloma/drug therapy , RNA , B-Cell Maturation Antigen , Transplantation, Autologous
6.
Dermatologie (Heidelb) ; 74(9): 657-662, 2023 Sep.
Article in German | MEDLINE | ID: mdl-37594514

ABSTRACT

The skin is a barrier organ and thus exposed to environmental factors from birth, which essentially determine skin aging. In order to describe and understand this complex process exactly, we applied the concept of the "exposome" to the environmentally induced skin aging process. In this review, we summarize current knowledge on the skin aging exposome. In this context, we characterize the most important exposomal factors, address their relative importance for skin aging and also the relevance of their mutual interactions. Finally, we discuss the clinical consequences resulting from this concept for an effective prevention of skin aging.


Subject(s)
Exposome , Skin Aging , Pregnancy , Female , Humans , Knowledge , Parturition , Records
7.
Transl Oncol ; 35: 101706, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37327584

ABSTRACT

Homologous recombination deficiency (HRD) is a predictive marker for response to poly (ADP-ribose) polymerase inhibitors (PARPi) in ovarian carcinoma. HRD scores have entered routine diagnostics, but the influence of algorithms, parameters and confounders has not been analyzed comprehensively. A series of 100 poorly differentiated ovarian carcinoma samples was analyzed using whole exome sequencing (WES) and genotyping. Tumor purity was determined using conventional pathology, digital pathology, and two bioinformatic methods. HRD scores were calculated from copy number profiles determined by Sequenza and by Sclust either with or without fixed tumor purity. Tumor purity determination by digital pathology combined with a tumory purity informed variant of Sequenza served as reference method for HRD scoring. Seven tumors had deleterious mutations in BRCA1/2, 12 tumors had deleterious mutations in other homologous recombination repair (HRR) genes, 18 tumors had variants of unknown significance (VUS) in BRCA1/2 or other HRR genes, while the remaining 63 tumors had no relevant alterations. Using the reference method for HRD scoring, 68 tumors were HRD-positive. HRDsum determined by WES correlated strongly with HRDsum determined by single nucleotide polymorphism (SNP) arrays (R = 0.85). Conventional pathology systematically overestimated tumor purity by 8% compared to digital pathology. All investigated methods agreed on classifying the deleterious BRCA1/2-mutated tumors as HRD-positive, but discrepancies were observed for some of the remaining tumors. Discordant HRD classification of 11% of the tumors was observed comparing the tumor purity uninformed default of Sequenza and the reference method. In conclusion, tumor purity is a critical factor for the determination of HRD scores. Assistance by digital pathology helps to improve accuracy and imprecision of its estimation.

8.
Mol Metab ; 73: 101736, 2023 07.
Article in English | MEDLINE | ID: mdl-37172821

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) remains one of the most common complications of diabetes despite great efforts to uncover its underlying mechanisms. The pathogenesis of DR is characterized by the deterioration of the neurovascular unit (NVU), showing damage of vascular cells, activation of glial cells and dysfunction of neurons. Activation of the hexosamine biosynthesis pathway (HBP) and increased protein O-GlcNAcylation have been evident in the initiation of DR in patients and animal models. SCOPE OF REVIEW: The impairment of the NVU, in particular, damage of vascular pericytes and endothelial cells arises in hyperglycemia-independent conditions as well. Surprisingly, despite the lack of hyperglycemia, the breakdown of the NVU is similar to the pathology in DR, showing activated HBP, altered O-GlcNAc and subsequent cellular and molecular dysregulation. MAJOR CONCLUSIONS: This review summarizes recent research evidence highlighting the significance of the HBP in the breakdown of the NVU in hyperglycemia-dependent and -independent manners, and thus identifies joint avenues leading to vascular damage as seen in DR and thus identifying novel potential targets in such retinal diseases.


Subject(s)
Diabetic Retinopathy , Hyperglycemia , Animals , Endothelial Cells/metabolism , Biosynthetic Pathways , Hexosamines/metabolism , Hyperglycemia/metabolism , Diabetic Retinopathy/metabolism
9.
Cell Death Discov ; 9(1): 126, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37059713

ABSTRACT

TP53 is the most frequently mutated gene in human cancer. While no TP53-targeting drugs have been approved in the USA or Europe so far, preclinical and clinical studies are underway to investigate targeting of specific or all TP53 mutations, for example, by restoration of the functionality of mutated TP53 (TP53mut) or protecting wildtype TP53 (TP53wt) from negative regulation. We performed a comprehensive mRNA expression analysis in 24 cancer types of TCGA to extract (i) a consensus expression signature shared across TP53 mutation types and cancer types, (ii) differential gene expression patterns between tumors harboring different TP53 mutation types such as loss of function, gain of function or dominant-negative mutations, and (iii) cancer-type-specific patterns of gene expression and immune infiltration. Analysis of mutational hotspots revealed both similarities across cancer types and cancer type-specific hotspots. Underlying ubiquitous and cancer type-specific mutational processes with the associated mutational signatures contributed to explaining this observation. Virtually no genes were differentially expressed between tumors harboring different TP53 mutation types, while hundreds of genes were over- and underexpressed in TP53mut compared to TP53wt tumors. A consensus list included 178 genes that were overexpressed and 32 genes that were underexpressed in the TP53mut tumors of at least 16 of the investigated 24 cancer types. In an association analysis of immune infiltration with TP53 mutations in 32 cancer subtypes, decreased immune infiltration was observed in six subtypes, increased infiltration in two subtypes, a mixed pattern of decreased and increased immune cell populations in four subtypes, while immune infiltration was not associated with TP53 status in 20 subtypes. The analysis of a large cohort of human tumors complements results from experimental studies and supports the view that TP53 mutations should be further evaluated as predictive markers for immunotherapy and targeted therapies.

10.
Br J Cancer ; 128(12): 2295-2306, 2023 06.
Article in English | MEDLINE | ID: mdl-37045906

ABSTRACT

BACKGROUND: The prognostic significance of tumour budding (TB) and minimal cell nest size (MCNS) was shown in human papillomavirus (HPV)-negative head and neck squamous cell carcinomas (HNSCC). However, the optimisation of cutpoints, the prognostic impact in HPV-positive HNSCC, and the comparison with other histopathological grading systems are insufficiently investigated. METHODS: TB and MCNS were analysed digitally in 1 and 10 high-power fields (HPF) of 331 HPV-positive and HPV-negative cases from TCGA. Optimising the cutpoints a new cellular dissociation grading (CDG) system was defined and compared to the WHO grading and the Brandwein-Gensler (BG) risk model. RESULTS: The two-tiered CDG system based solely on TB yielded optimal prognostic stratification with shortened overall survival for CDG-high cases. Optimal cut-offs were two buds (1 HPF) and six buds (10 HPF), respectively. Analysing MCNS did not add prognostic significance to quantifying TB. CDG was a significant prognostic marker in HPV-negative and HPV-positive tumours and prognostically superior to the WHO and BG systems. High CDG was associated with clinically occult lymph-node metastases. CONCLUSIONS: The most comprehensive study of TB in HNSCC so far confirmed its prognostic impact in HPV-negative tumours and for the first time in HPV-positive tumours. Further studies are warranted to evaluate its applicability for therapy guidance in HNSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck , Carcinoma, Squamous Cell/pathology , Prognosis , Papillomavirus Infections/complications , Papillomaviridae , Biomarkers
11.
Nature ; 614(7947): 287-293, 2023 02.
Article in English | MEDLINE | ID: mdl-36725928

ABSTRACT

The ability of the ancient Egyptians to preserve the human body through embalming has not only fascinated people since antiquity, but also has always raised the question of how this outstanding chemical and ritual process was practically achieved. Here we integrate archaeological, philological and organic residue analyses, shedding new light on the practice and economy of embalming in ancient Egypt. We analysed the organic contents of 31 ceramic vessels recovered from a 26th Dynasty embalming workshop at Saqqara1,2. These vessels were labelled according to their content and/or use, enabling us to correlate organic substances with their Egyptian names and specific embalming practices. We identified specific mixtures of fragrant or antiseptic oils, tars and resins that were used to embalm the head and treat the wrappings using gas chromatography-mass spectrometry analyses. Our study of the Saqqara workshop extends interpretations from a micro-level analysis highlighting the socio-economic status of a tomb owner3-7 to macro-level interpretations of the society. The identification of non-local organic substances enables the reconstruction of trade networks that provided ancient Egyptian embalmers with the substances required for mummification. This extensive demand for foreign products promoted trade both within the Mediterranean8-10 (for example, Pistacia and conifer by-products) and with tropical forest regions (for example, dammar and elemi). Additionally, we show that at Saqqara, antiu and sefet-well known from ancient texts and usually translated as 'myrrh' or 'incense'11-13 and 'a sacred oil'13,14-refer to a coniferous oils-or-tars-based mixture and an unguent with plant additives, respectively.


Subject(s)
Embalming , Mummies , Humans , Egypt, Ancient , Embalming/economics , Embalming/history , Embalming/methods , Gas Chromatography-Mass Spectrometry , History, Ancient , Mummies/history , Resins, Plant/analysis , Resins, Plant/history , Ceramics/chemistry , Ceramics/history , Tars/analysis , Tars/history , Plant Oils/analysis , Plant Oils/history , Mediterranean Region , Tropical Climate , Forests , Tracheophyta/chemistry , Commerce/history
12.
Health Sci Rep ; 6(1): e1045, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36620515

ABSTRACT

Background and Aims: Female pattern hair loss affects females of all ages with a trend to increase after menopause. This disorder may have significant psychological impact and lead to anxiety and depression. Objective: In a single center, double blind, randomized, placebo-controlled study, the effects of oral Pycnogenol® intake (3 × 50 mg/day for a total of 6 months) on hair density, scalp microcirculation, and a variety of skin physiological parameters was studied in Han Chinese menopausal women (N = 76) in Shanghai, China. Methods: Measurements were taken at the beginning and after 2 and 6 months, respectively. Hair density was determined by digital photographs and further evaluated by Trichoscan software. Transepidermal water loss was measured by a humidity sensor in a closed chamber on the skin surface. Changes in microcirculation were detected as resting flux on the scalp by reflection photoplethysmography. Results: Pycnogenol® intake significantly increased hair density by 30% and 23% after 2 and 6 months of treatment, respectively, as detected by Trichoscan® evaluation of digital photographs. Interestingly, photoplethysmography revealed that this beneficial effect was associated with a decrease in resting flux of the scalp skin, which might indicate an improvement of microcirculation. None of these effects were observed in the placebo taking group. In addition, a significant transient decrease of transepidermal water loss was observed in scalp skin under Pycnogenol,® but not placebo treatment. Conclusion: Oral intake of Pycnogenol® might have the potential to reduce hair loss in postmenopausal women.

14.
Brain Sci ; 12(11)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36358353

ABSTRACT

Glioblastomas are incurable primary brain tumors harboring a heterogeneous landscape of genetic and metabolic alterations. Longitudinal imaging by MRI and [18F]FET-PET measurements enable us to visualize the features of evolving tumors in a dynamic manner. Yet, close-meshed longitudinal imaging time points for characterizing temporal and spatial metabolic alterations during tumor evolution in patients is not feasible because patients usually present with already established tumors. The replication-competent avian sarcoma-leukosis virus (RCAS)/tumor virus receptor-A (tva) system is a powerful preclinical glioma model offering a high grade of spatial and temporal control of somatic gene delivery in vivo. Consequently, here, we aimed at using MRI and [18F]FET-PET to identify typical neuroimaging characteristics of the platelet-derived growth factor B (PDGFB)-driven glioma model using the RCAS-tva system. Our study showed that this preclinical glioma model displays MRI and [18F]FET-PET features that highly resemble the corresponding established human disease, emphasizing the high translational relevance of this experimental model. Furthermore, our investigations unravel exponential growth dynamics and a model-specific tumor microenvironment, as assessed by histology and immunochemistry. Taken together, our study provides further insights into this preclinical model and advocates for the imaging-stratified design of preclinical therapeutic interventions.

15.
Br J Cancer ; 127(8): 1540-1549, 2022 11.
Article in English | MEDLINE | ID: mdl-35871236

ABSTRACT

BACKGROUND: Cholangiocarcinoma (CCA) is a primary malignancy of the biliary tract with a dismal prognosis. Recently, several actionable genetic aberrations were identified with significant enrichment in intrahepatic CCA, including FGFR2 gene fusions with a prevalence of 10-15%. Recent clinical data demonstrate that these fusions are druggable in a second-line setting in advanced/metastatic disease and the efficacy in earlier lines of therapy is being evaluated in ongoing clinical trials. This scenario warrants standardised molecular profiling of these tumours. METHODS: A detailed analysis of the original genetic data from the FIGHT-202 trial, on which the approval of Pemigatinib was based, was conducted. RESULTS: Comparing different detection approaches and displaying representative cases, we described the genetic landscape and architecture of FGFR2 fusions in iCCA and show biological and technical aspects to be considered for their detection. We elaborated parameters, including a suggestion for annotation, that should be stated in a molecular diagnostic FGFR2 report to allow a complete understanding of the analysis performed and the information provided. CONCLUSION: This study provides a detailed presentation and dissection of the technical and biological aspects regarding FGFR2 fusion detection, which aims to support molecular pathologists, pathologists and clinicians in diagnostics, reporting of the results and decision-making.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Bile Duct Neoplasms/drug therapy , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/drug therapy , Genomics , Humans , Molecular Diagnostic Techniques , Receptor, Fibroblast Growth Factor, Type 2/genetics
16.
J Pathol Clin Res ; 8(4): 371-382, 2022 07.
Article in English | MEDLINE | ID: mdl-35384413

ABSTRACT

Homologous recombination deficiency (HRD) leads to DNA double-strand breaks and can be exploited by the use of poly (ADP-ribose) polymerase (PARP) inhibitors to induce synthetic lethality. Extending the original therapeutic concept, the role of HRD is currently being investigated in clinical trials testing immune checkpoint blockers alone or in combination with PARP inhibitors, but the relationship between HRD and immune cell context in cancer is incompletely understood. We analyzed the association between immune cell composition, gene expression, and HRD in 9,041 tumors of 32 solid cancer types from The Cancer Genome Atlas (TCGA). The numbers of genomic scars were quantified by the HRD sum score (HRDsum) including loss of heterozygosity, large-scale state transitions, and telomeric allelic imbalance. The T-cell inflamed gene expression profile correlated weakly, but significantly positively, with HRDsum across cancer types (ρ = 0.17). Within individual cancer types, a significantly positive correlation was observed only in breast cancer, ovarian cancer, and four other cancer types, but not in the remaining 26 cancer types. HRDsum and tumor mutational burden (TMB) correlated significantly positively across cancer types (ρ = 0.42) and within 18 cancer types. HRDsum and a proliferation metagene correlated significantly positively across cancer types (ρ = 0.52) and within 20 cancer types. Mismatch repair deficiency and HRD as well as proofreading deficiency showed a high level of exclusivity. High HRD scores were associated with an immunologically activated tumor microenvironment only in a minority of cancer types. Our data favor the combination of genetic markers, complex genomic markers (including HRDsum and TMB), and other molecular markers (including proliferation scores) for a precise and comprehensive read-out of the tumor biology and an individually tailored treatment.


Subject(s)
Microsatellite Instability , Ovarian Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Ovarian Epithelial , Female , Homologous Recombination , Humans , Ovarian Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Tumor Microenvironment/genetics
17.
Technol Health Care ; 30(5): 1125-1138, 2022.
Article in English | MEDLINE | ID: mdl-35342062

ABSTRACT

BACKGROUND: While pain in the severe sacroiliac joint (SIJ) is a common cause of lower back pain, SIJ disease is often overlooked as a diagnosis. OBJECTIVE: This study examines the extent of sufficient long-term pain relief and functional improvement in patients with SIJ syndrome that are treated with thermocoagulation. Some patients treated with thermocoagulation noted initial improvement, but the functionality and pain relief had limited duration and efficacy. Patients with insufficient improvement were recommended to undergo fusion surgery as an option for better and longer lasting results. METHOD: Patients with a long history of back or pelvic problems were selected for the study. Endoscopic thermal coagulation of the SIJ was carried out. The follow-up examinations took place after 1, 3, 6, 12 months. In patients with insufficient pain relief and functionality after thermocoagulation, a fusion surgery was performed. The results of the fusion surgery were documented over a 12-month follow-up period. To carry out the statistical evaluation visual analog scale (VAS), Oswestry-Disability-Index (ODI) and the consumption of opioids were recorded. RESULTS: Forty-eight patients were included. The mean VAS values 12 months after thermocoagulation were 68.9. The ODI after 12 months was very near or somewhat higher than their baseline prior to the thermocoagulation. Thus, a fusion surgery was recommended. Thirty-three patients agreed to the fusion operation. The VAS values 12 months after fusion surgery decreased to 53.1. Analogous to the VAS values, the Oswestry index (ODI) showed a significant improvement after the fusion operation. CONCLUSION: The success of surgical intervention in 88% of the SIJ syndrome patients with inadequate results 12 months after thermocoagulation proves the superiority of SIJ fusion surgery. This study showed long-lasting pain relief by an average of 65% and a median improvement in functional impairments of 60%. In view of these results, fusion surgery should be considered for patients without sufficient success of thermocoagulation.


Subject(s)
Low Back Pain , Spinal Fusion , Analgesics, Opioid , Electrocoagulation , Humans , Low Back Pain/surgery , Sacroiliac Joint/surgery , Spinal Fusion/methods
18.
J Cosmet Dermatol ; 21(10): 4462-4469, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35150043

ABSTRACT

BACKGROUND: Skin aging is a process regulated by chronological aging and amplified by exposome factors including chronic UV exposure and pollution, which both induce reactive oxygen species. Topical antioxidants have the potential to counteract this process and to improve skin aging signs, including wrinkles and hyperpigmentation. OBJECTIVE: To evaluate the efficacy of a topical antioxidant serum containing 15% L-ascorbic acid, neohesperidin, Pinus pinaster bark, tocopherol, and hyaluronic acid (HA) ex vivo on air pollution-induced pigmentation and gene expression, as well as in vivo on skin aging signs in Brazilian volunteers, after 90 days of use. METHODS: Ex vivo human skin samples were repetitively exposed to Diesel Exhaust Particles (DEP) and subsequently analyzed for changes in pigmentation and gene expression. Clinical efficacy was evaluated in 40 healthy adult females with phototype II to IV and visible photoaging signs, including facial hyperpigmentation, through dermatological evaluation and instrumental analysis including Reflectance Confocal Microscopy. RESULTS: Ex vivo, the topical antioxidant serum significantly reduced DEP-induced skin pigmentation and expression of proinflammatory genes. A significant improvement of skin aging signs was observed after 90 days. Local tolerance was good. CONCLUSION: The tested serum is effective in protecting human skin ex vivo against air pollution-induced skin pigmentation/aging and reduced in vivo skin aging signs, with a good safety profile after 90 days of daily use.


Subject(s)
Hyperpigmentation , Skin Aging , Adult , Female , Humans , Hyaluronic Acid , Antioxidants/pharmacology , Tocopherols , Hyperpigmentation/drug therapy , Hyperpigmentation/etiology , Ascorbic Acid , Vitamin E
19.
Skin Pharmacol Physiol ; 35(2): 77-86, 2022.
Article in English | MEDLINE | ID: mdl-34348349

ABSTRACT

INTRODUCTION: Bathing in the Blue Lagoon (BL) in Iceland benefits patients with psoriasis. Accordingly, the BL water contains algae with biological activities that improve skin barrier function and affect T-cell responses relevant for psoriasis. Bathing in the BL is also becoming increasingly popular among healthy individuals and anecdotal evidence suggests positive effects on uneven skin pigmentation. OBJECTIVE: The aim of the study was to address the impact of BL algae on skin pigmentation. METHODS: In this work, in vitro gene expression studies in melanocytes and a noninvasive in vivo study were conducted. RESULTS: We here report that normal human epidermal melanocytes, which had been treated with nontoxic concentrations of BL algae, show a significantly reduced expression of α melanocyte-stimulating hormone-induced expression of genes important for melanin synthesis, such as tyrosinase, tyrosinase-related protein 1, dopachrome tautomerase, melan A protein, and pre-melanosome protein. This in vitro observation prompted us to conduct a randomized, double-blind, intra-individual, comparative split-face in vivo study, in which 60 volunteers with pre-existing facial pigment spots were treated twice daily with a BL algae containing serum or a vehicle control. We found that constitutive skin pigmentation as determined by colorimetry (individual typology angle and luminescence) did not differ significantly between vehicle- and serum-treated skin sites. In marked contrast, digital photography under cross-polarized lighting and RBX technology (VISIA CR) revealed that the number of pigment spots in the serum-treated face decreased significantly compared to the vehicle-treated side. CONCLUSION: Thus, BL algae can affect human melanocyte function in vitro and reduce uneven facial skin pigmentation in vivo.


Subject(s)
Melanocytes , Skin Pigmentation , Double-Blind Method , Humans , Melanins/metabolism , Monophenol Monooxygenase/metabolism , Skin/metabolism
20.
Int J Infect Dis ; 109: 203-208, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34224870

ABSTRACT

OBJECTIVES: To investigate the prevalence of, and the factors associated with, long-term sick leave in working-age patients diagnosed with COVID-19 in general practices in Germany. METHODS: Patients aged 18-65 years diagnosed with COVID-19 in any of 1255 general practices in Germany between March 2020 and February 2021 were included in the study. Long-term sick leave was defined as sick leave of at least 4 weeks. The association between predefined independent variables and long-term sick leave was studied using an adjusted logistic regression model. RESULTS: This study included 30 950 patients diagnosed with COVID-19 (51.7% women, mean (standard deviation) age 41.5 (±13.0) years). The prevalence of long-term sick leave was 5.8%. Female sex, older age, and several conditions (noninfective enteritis and colitis; reaction to severe stress, and adjustment disorders; atopic dermatitis; mononeuropathies; reflux diseases; diabetes mellitus; and hypertension) were positively and significantly associated with long-term sick leave. CONCLUSION: Long-term sick leave was relatively rare in COVID-19 patients followed in general practices in Germany. These results should be confirmed or invalidated in other settings and countries.


Subject(s)
COVID-19 , Sick Leave , Adult , Aged , Female , Germany/epidemiology , Humans , Male , Prevalence , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...