Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 12(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37372085

ABSTRACT

The expression levels of various genes involved in human spermatogenesis are influenced by microRNAs (miRNAs), specifically microRNA-23a/b-3p. While certain genes are essential for spermatogenesis and male germ cell function, the regulation of their expression remains unclear. This study aimed to investigate whether microRNA-23a/b-3p targets genes involved in spermatogenesis and the impact of this targeting on the expression levels of these genes in males with impaired fertility. In-silico prediction and dual-luciferase assays were used to determine the potential connections between microRNA-23a/b-3p overexpression and reduced expression levels of 16 target genes. Reverse transcription-quantitative PCR (RT-qPCR) was conducted on 41 oligoasthenozoospermic men receiving infertility treatment and 41 age-matched normozoospermic individuals to verify the lower expression level of target genes. By employing dual-luciferase assays, microRNA-23a-3p was found to directly target eight genes, namely NOL4, SOX6, GOLGA6C, PCDHA9, G2E3, ZNF695, CEP41, and RGPD1, while microRNA-23b-3p directly targeted three genes, namely SOX6, GOLGA6C, and ZNF695. The intentional alteration of the microRNA-23a/b binding site within the 3' untranslated regions (3'UTRs) of the eight genes resulted in the loss of responsiveness to microRNA-23a/b-3p. This confirmed that NOL4, SOX6, GOLGA6C, PCDHA9, and CEP41 are direct targets for microRNA-23a-3p, while NOL4, SOX6, and PCDHA9 are direct targets for microRNA-23b-3p. The sperm samples of oligoasthenozoospermic men had lower expression levels of target genes than age-matched normozoospermic men. Correlation analysis indicated a positive correlation between basic semen parameters and lower expression levels of target genes. The study suggests that microRNA-23a/b-3p plays a significant role in spermatogenesis by controlling the expression of target genes linked to males with impaired fertility and has an impact on basic semen parameters.

2.
Cells ; 12(9)2023 04 25.
Article in English | MEDLINE | ID: mdl-37174638

ABSTRACT

Sperm motility is a prerequisite for achieving pregnancy, and alterations in sperm motility, along with sperm count and morphology, are commonly observed in subfertile men. The aim of the study was to determine whether the expression level of genes annotated with the Gene Ontology (GO) term 'sperm motility' differed in sperm collected from healthy men and men diagnosed with oligoasthenozoospermia. Reverse transcription quantitative real-time PCR (RT-qPCR), quantitative mass spectrometry (LC-MS/MS), and enrichment analyses were used to validate a set of 132 genes in 198 men present at an infertility clinic. Out of the 132 studied sperm-motility-associated genes, 114 showed differentially expressed levels in oligoasthenozoospermic men compared to those of normozoospermic controls using an RT-qPCR analysis. Of these, 94 genes showed a significantly lower expression level, and 20 genes showed a significantly higher expression level. An MS analysis of sperm from an independent cohort of healthy and subfertile men identified 692 differentially expressed proteins, of which 512 were significantly lower and 180 were significantly higher in oligoasthenozoospermic men compared to those of the normozoospermic controls. Of the 58 gene products quantified with both techniques, 48 (82.75%) showed concordant regulation. Besides the sperm-motility-associated proteins, the unbiased proteomics approach uncovered several novel proteins whose expression levels were specifically altered in abnormal sperm samples. Among these deregulated proteins, there was a clear overrepresentation of annotation terms related to sperm integrity, the cytoskeleton, and energy-related metabolism, as well as human phenotypes related to spermatogenesis and sperm-related abnormalities. These findings suggest that many of these proteins may serve as diagnostic markers of male infertility. Our study reveals an extended number of sperm-motility-associated genes with altered expression levels in the sperm of men with oligoasthenozoospermia. These genes and/or proteins can be used in the future for better assessments of male factor infertility.


Subject(s)
Infertility, Male , Semen , Pregnancy , Female , Humans , Male , Semen/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Spermatozoa/metabolism , Infertility, Male/genetics , Infertility, Male/metabolism , Fertility/genetics
3.
Cells ; 12(7)2023 03 26.
Article in English | MEDLINE | ID: mdl-37048090

ABSTRACT

Although the proteome of sperm has been characterized, there is still a lack of high-throughput studies on dysregulated proteins in sperm from subfertile men, with only a few studies on the sperm proteome in asthenozoospermic and oligoasthenozoospermic men. Using liquid chromatography-mass spectrometry (LC-MS/MS) along with bioinformatics analyses, we investigated the proteomic landscape of sperm collected from subfertile men (n = 22), i.e., asthenozoospermic men (n = 13), oligoasthenozoospermic men (n = 9) and normozoospermic controls (n = 31). We identified 4412 proteins in human sperm. Out of these, 1336 differentially abundant proteins were identified in 70% of the samples. In subfertile men, 32 proteins showed a lower abundance level and 34 showed a higher abundance level when compared with normozoospermic men. Compared to normozoospermic controls, 95 and 8 proteins showed a lower abundance level, and 86 and 1 proteins showed a higher abundance level in asthenozoospermic and oligoasthenozoospermic men, respectively. Sperm motility and count were negatively correlated with 13 and 35 and positively correlated with 37 and 20 differentially abundant proteins in asthenozoospermic and oligoasthenozoospermic men, respectively. The combination of the proteins APCS, APOE, and FLOT1 discriminates subfertile males from normozoospermic controls with an AUC value of 0.95. Combined APOE and FN1 proteins discriminate asthenozoospermic men form controls with an AUC of 1, and combined RUVBL1 and TFKC oligoasthenozoospermic men with an AUC of 0.93. Using a proteomic approach, we revealed the proteomic landscape of sperm collected from asthenozoospermic or oligoasthenozoospermic men. Identified abundance changes of several specific proteins are likely to impact sperm function leading to subfertility. The data also provide evidence for the usefulness of specific proteins or protein combinations to support future diagnosis of male subfertility.


Subject(s)
Asthenozoospermia , Proteome , Humans , Male , Proteome/metabolism , Proteomics , Chromatography, Liquid , Semen/metabolism , Sperm Motility , Tandem Mass Spectrometry , Spermatozoa/metabolism , Asthenozoospermia/diagnosis , Apolipoproteins E , ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/metabolism , DNA Helicases/metabolism
4.
Sci Rep ; 13(1): 3645, 2023 03 04.
Article in English | MEDLINE | ID: mdl-36871032

ABSTRACT

Seminal plasma contains a variety of extracellular vesicles (EVs) that deliver RNAs including microRNAs (miRNAs) molecules. However, the roles of these EVs along with their delivered RNAs and their interactions with male infertility are not clear. Sperm-associated antigen 7 (SPAG 7) is expressed in male germ cells and plays a crucial role in several biological functions associated with sperm production and maturation. In this study, we aimed to identify the post-transcriptional regulation of SPAG7 in seminal plasma (SF-Native) and seminal plasma-derived extracellular vesicles (SF-EVs) collected from 87 men undergoing infertility treatment. Among the multiple binding sites for miRNAs within its 3'UTR of SPAG7, we identified the binding of four miRNAs (miR-15b-5p, miR-195-5p, miR-424-5p, and miR-497-5p) to the 3'UTR of SPAG7 by the dual luciferase assays. Analyzing sperm, we found reduced mRNA expression levels of SPAG7 in SF-EVs and SF-Native samples from oligoasthenozoospermic men. By contrast, two miRNAs (miR-424-5p and miR-497-5p) form the SF-Native samples, and four miRNAs (miR-195-5p, miR-424-5p, miR-497-5p, and miR-6838-5p) from the SF-EVs samples showed significantly higher expression levels in oligoasthenozoospermic men. The expression levels of miRNAs and SPAG7 were significantly correlated with basic semen parameters. These findings contribute significantly to our understanding of regulatory pathways in male fertility by showing a direct link between upregulated miRNA, notably miR-424, and downregulated SPAG7 both in seminal plasma and in plasma-derived EVs likely contributing to oligoasthenozoospermia.


Subject(s)
Extracellular Vesicles , Infertility, Male , MicroRNAs , Humans , Male , Semen , 3' Untranslated Regions , Antigens, Surface
5.
RNA Biol ; 20(1): 1-9, 2023 01.
Article in English | MEDLINE | ID: mdl-36511578

ABSTRACT

For cancers and other pathologies, early diagnosis remains the most promising path to survival. Profiling of longitudinal cohorts facilitates insights into trajectories of biomarkers. We measured microRNA expression in 240 serum samples from patients with colon, lung, and breast cancer and from cancer-free controls. Each patient provided at least two serum samples, one prior to diagnosis and one following diagnosis. The median time interval between the samples was 11.6 years. Using computational models, we evaluated the circulating profiles of 21 microRNAs. The analysis yielded two sets of biomarkers, static ones that show an absolute difference between certain cancer types and controls and dynamic ones where the level over time provided higher diagnostic information content. In the first group, miR-99a-5p stands out for all three cancer types. In the second group, miR-155-5p allows to predict lung cancers and colon cancers. Classification in samples from cancer and non-cancer patients using gradient boosted trees reached an average accuracy of 79.9%. The results suggest that individual change over time or an absolute value at one time point may predict a disease with high specificity and sensitivity.


Subject(s)
Circulating MicroRNA , MicroRNAs , Neoplasms , Humans , Biomarkers , Biomarkers, Tumor/genetics , Early Detection of Cancer , Gene Expression Profiling , MicroRNAs/genetics , Neoplasms/diagnosis , Neoplasms/genetics
6.
Front Cell Dev Biol ; 10: 973849, 2022.
Article in English | MEDLINE | ID: mdl-36211460

ABSTRACT

Objective: To elucidate and validate the potential regulatory function of miR-19a/b-3p and its spermatogenesis-related transcripts content in sperm samples collected from men with oligoasthenozoospermia. Methods: Men presenting at an infertility clinic were enrolled. MicroRNA (miRNA) and target genes evaluation were carried out using in silico prediction analysis, Reverse transcription-quantitative PCR (RT-qPCR) validation, and Western blot confirmation. Results: The expression levels of miRNA-19a/b-3p were significantly up-regulated and 51 target genes were significantly down-regulated in oligoasthenozoospermic men compared with age-matched normozoospermic men as determined by RT-qPCR. Correlation analysis highlighted that sperm count, motility, and morphology were negatively correlated with miRNA-19a/b-3p and positively correlated with the lower expression level of 51 significantly identified target genes. Furthermore, an inverse correlation between higher expression levels of miRNA-19a/b-3p and lower expression levels of 51 target genes was observed. Consistent with the results of the RT-qPCR, reduced expression levels of STK33 and DNAI1 protein levels were identified in an independent cohort of sperm samples collected from men with oligoasthenozoospermia. Conclusion: Findings suggest that the higher expression of miRNA-19a/b-3p or the lower expression of target genes are associated with oligoasthenozoospermia and male infertility, probably through influencing basic semen parameters. This study lay the groundwork for future studies focused on investigating therapies for male infertility.

7.
Sci Rep ; 11(1): 13351, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172798

ABSTRACT

Women undergoing infertility treatment are routinely subjected to one or more tests of ovarian reserve. Therefore, an adequate assessment of the ovarian reserve is necessary for the treatment. In this study, we aimed to characterize the potential role of microRNAs (miRNAs) as biomarkers for women with different ovarian reserves. A total of 159 women were recruited in the study and classified according to their anti-Müllerian hormone (AMH) level into three groups: (1) low ovarian reserve (LAMH, n = 39), (2) normal ovarian reserve (NAMH, n = 80), and (3) high ovarian reserve (HAMH, n = 40). SurePrint Human miRNA array screening and reverse transcription-quantitative PCR (RT-qPCR) were respectively employed to screen and validate the miRNA abundance level in the three tested groups. Compared with NAMH, the abundance level of 34 and 98 miRNAs was found to be significantly altered in LAMH and HAMH, respectively. The abundance level of miRNAs was further validated by RT-qPCR in both, the screening samples as well as in an independent set of validation samples. The abundance levels of the validated miRNAs were significantly correlated with the AMH level. The best AUC value for the prediction of the increase and decrease in the AMH level was obtained for the miR-100-5p and miR-21-5p, respectively. The level of miRNAs abundance correlates with the level of AMH, which may serve as a tool for identifying women with a different ovarian reserve and may help to lay the ground for the development of novel diagnostic approaches.


Subject(s)
MicroRNAs/genetics , Ovarian Follicle/cytology , Ovarian Reserve/genetics , Adult , Age Factors , Anti-Mullerian Hormone/metabolism , Biomarkers/metabolism , Female , Fertilization in Vitro/methods , Humans , Infertility, Female/genetics , Infertility, Female/metabolism , Ovarian Follicle/metabolism , Young Adult
8.
Cells ; 10(5)2021 04 30.
Article in English | MEDLINE | ID: mdl-33946378

ABSTRACT

Little is known about abundance level changes of circulating microRNAs (miRNAs) and messenger RNAs (mRNA) in patients with Ebstein's anomaly (EA). Here, we performed an integrated analysis to identify the differentially abundant miRNAs and mRNA targets and to identify the potential therapeutic targets that might be involved in the mechanisms underlying EA. A large panel of human miRNA and mRNA microarrays were conducted to determine the genome-wide expression profiles in the blood of 16 EA patients and 16 age and gender-matched healthy control volunteers (HVs). Differential abundance level of single miRNA and mRNA was validated by Real-Time quantitative PCR (RT-qPCR). Enrichment analyses of altered miRNA and mRNA abundance levels were identified using bioinformatics tools. Altered miRNA and mRNA abundance levels were observed between EA patients and HVs. Among the deregulated miRNAs and mRNAs, 76 miRNAs (49 lower abundance and 27 higher abundance, fold-change of ≥2) and 29 mRNAs (25 higher abundance and 4 lower abundance, fold-change of ≥1.5) were identified in EA patients compared to HVs. Bioinformatics analysis identified 37 pairs of putative miRNA-mRNA interactions. The majority of the correlations were detected between the lower abundance level of miRNA and higher abundance level of mRNA, except for let-7b-5p, which showed a higher abundance level and their target gene, SCRN3, showed a lower abundance level. Pathway enrichment analysis of the deregulated mRNAs identified 35 significant pathways that are mostly involved in signal transduction and cellular interaction pathways. Our findings provide new insights into a potential molecular biomarker(s) for the EA that may guide the development of novel targeting therapies.


Subject(s)
Ebstein Anomaly/genetics , Gene Regulatory Networks , MicroRNAs/genetics , RNA, Messenger/genetics , Adolescent , Adult , Ebstein Anomaly/metabolism , Female , Humans , Male , MicroRNAs/metabolism , RNA, Messenger/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...