Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
PLoS Biol ; 22(4): e3002580, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38607979

ABSTRACT

Endosymbiosis drives evolutionary innovation and underpins the function of diverse ecosystems. The mechanistic origins of symbioses, however, remain unclear, in part because early evolutionary events are obscured by subsequent evolution and genetic drift. This Essay highlights how experimental studies of facultative, host-switched, and synthetic symbioses are revealing the important role of fitness trade-offs between within-host and free-living niches during the early-stage evolution of new symbiotic associations. The mutational targets underpinning such trade-offs are commonly regulatory genes, such that single mutations have major phenotypic effects on multiple traits, thus enabling and reinforcing the transition to a symbiotic lifestyle.


Subject(s)
Ecosystem , Symbiosis , Symbiosis/genetics , Exercise , Genetic Drift , Mutation/genetics
2.
Ecol Evol ; 14(2): e10887, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38304275

ABSTRACT

Harnessing science-based policy is key to addressing global challenges like the biodiversity and climate crises. Open research principles underpin effective science-based policy, but the uptake of these principles is likely constrained by the politicisation, commoditisation and conflicting motives of stakeholders in the research landscape. Here, using the mission and vision statements from 129 stakeholders from across the research landscape, we explore alignment in open research principles between stakeholders. We find poor alignment between stakeholders, largely focussed around journals, societies and funders, all of which have low open research language-use. We argue that this poor alignment stifles knowledge flow within the research landscape, ultimately limiting the mobilisation of impactful science-based policy. We offer recommendations on how the research landscape could embrace open research principles to accelerate societies' ability to solve global challenges.

4.
Ecol Evol ; 14(2): e10913, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38322005

ABSTRACT

All animals and plants respond to changes in the environment during their life cycle. This flexibility is known as phenotypic plasticity and allows organisms to cope with variable environments. A common source of environmental variation is predation risk, which describes the likelihood of being attacked and killed by a predator. Some species can respond to the level of predation risk by producing morphological defences against predation. A classic example is the production of so-called 'neckteeth' in the water flea, Daphnia pulex, which defend against predation from Chaoborus midge larvae. Previous studies of this defence have focussed on changes in pedestal size and the number of spikes along a gradient of predation risk. Although these studies have provided a model for continuous phenotypic plasticity, they do not capture the whole-organism shape response to predation risk. In contrast, studies in fish and amphibians focus on shape as a complex, multi-faceted trait made up of different variables. In this study, we analyse how multiple aspects of shape change in D. pulex along a gradient of predation risk from Chaoborus flavicans. These changes are dominated by the neckteeth defence, but there are also changes in the size and shape of the head and the body. We detected change in specific modules of the body plan and a level of integration among modules. These results are indicative of a complex, multi-faceted response to predation and provide insight into how predation risk drives variation in shape and size at the level of the whole organism.

5.
Sci Adv ; 9(43): eadg1641, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37878701

ABSTRACT

Widely documented, megaevolutionary jumps in phenotypic diversity continue to perplex researchers because it remains unclear whether these marked changes can emerge from microevolutionary processes. Here, we tackle this question using new approaches for modeling multivariate traits to evaluate the magnitude and distribution of elaboration and innovation in the evolution of bird beaks. We find that elaboration, evolution along the major axis of phenotypic change, is common at both macro- and megaevolutionary scales, whereas innovation, evolution away from the major axis of phenotypic change, is more prominent at megaevolutionary scales. The major axis of phenotypic change among species beak shapes at megaevolutionary scales is an emergent property of innovation across clades. Our analyses suggest that the reorientation of phenotypes via innovation is a ubiquitous route for divergence that can arise through gradual change alone, opening up further avenues for evolution to explore.


Subject(s)
Biological Evolution , Birds , Animals , Beak , Phenotype , Phylogeny
6.
Ecol Evol ; 13(5): e9961, 2023 May.
Article in English | MEDLINE | ID: mdl-37181203

ABSTRACT

We call for journals to commit to requiring open data be archived in a format that will be simple and clear for readers to understand and use. If applied consistently, these requirements will allow contributors to be acknowledged for their work through citation of open data, and facilitate scientific progress.

8.
Nat Ecol Evol ; 6(10): 1449-1457, 2022 10.
Article in English | MEDLINE | ID: mdl-35982224

ABSTRACT

The adaptive nature of phenotypic plasticity is widely documented. However, little is known about the evolutionary forces that shape genetic variation of plasticity within populations. Whether genetic variation in plasticity is driven by stabilizing or diversifying selection and whether the strength of such forces remains constant through time, remain open questions. Here, we address this issue by assessing the evolutionary forces that shape genetic variation in antipredator developmental plasticity of Daphnia pulex. Antipredator plasticity in D. pulex is characterized by the growth of a pedestal and spikes in the dorsal head region upon exposure to predator cue. We characterized genetic variation in plasticity using a method that describes the entire dorsal shape amongst >100 D. pulex strains recently derived from the wild. We observed the strongest reduction in genetic variation in dorsal areas where plastic responses were greatest, consistent with stabilizing selection. We compared mutational variation (Vm) to standing variation (Vg) and found that Vg/Vm is lowest in areas of greatest plasticity, again consistent with stabilizing selection. Our results suggest that stabilizing selection operates directly on phenotypic plasticity in Daphnia and provide a rare glimpse into the evolution of fitness-related traits in natural populations.


Subject(s)
Daphnia , Genetic Variation , Adaptation, Physiological , Animals , Daphnia/genetics , Phenotype
9.
PLoS One ; 17(7): e0272052, 2022.
Article in English | MEDLINE | ID: mdl-35901067

ABSTRACT

Microbial experimental evolution allows studying evolutionary dynamics in action and testing theory predictions in the lab. Experimental evolution in chemostats (i.e. continuous flow through cultures) has recently gained increased interest as it allows tighter control of selective pressures compared to static batch cultures, with a growing number of efforts to develop systems that are easier and cheaper to construct. This protocol describes the design and construction of a multiplexed chemostat array (dubbed "mesostats") designed for cultivation of algae in 16 concurrent populations, specifically intended for studying adaptation to herbicides. We also present control data from several experiments run on the system to show replicability, data illustrating the effects of common issues like leaks, contamination and clumps, and outline possible modifications and adaptations of the system for future research.


Subject(s)
Adaptation, Physiological , Batch Cell Culture Techniques , Batch Cell Culture Techniques/methods
10.
Curr Biol ; 32(6): 1310-1318.e4, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35172127

ABSTRACT

Local adaptation is a fundamental evolutionary process generating biological diversity and potentially enabling ecological speciation. Divergent selection underlies the evolution of local adaptation in spatially structured populations by driving their adaptation toward local optima. Environments rarely differ along just one environmental axis; therefore, divergent selection may often be multidimensional. How the dimensionality of divergent selection affects local adaptation is unclear: evolutionary theory predicts that increasing dimensionality will increase local adaptation when associated with stronger overall selection but may have less predictable effects if selection strengths are equal. Experiments are required that allow the effect of the dimensionality of selection on local adaptation to be tested independently of the total strength of selection. We experimentally evolved 32 pairs of monogonont rotifer populations under either unidimensional divergent selection (a single pair of stressors) or multidimensional divergent selection (three pairs of stressors), keeping the total strength of selection equal between treatments. At regular intervals, we assayed fitness in home and away environments to assess local adaptation. We observed an initial increase and subsequent decline of local adaptation in populations exposed to multidimensional selection, compared with a slower but eventually stronger increase in local adaptation in populations exposed to unidimensional selection. Our results contrast with existing predictions, such as the "weak multifarious" and "stronger selection" hypotheses. Instead, we hypothesize that adaptation to multidimensional divergent selection may favor generalist genotypes and only produce transient local adaptation.


Subject(s)
Acclimatization , Adaptation, Physiological , Adaptation, Biological , Adaptation, Physiological/genetics , Biological Evolution , Selection, Genetic
11.
Proc Biol Sci ; 289(1967): 20212484, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35042413

ABSTRACT

Trapliners are pollinators that visit widely dispersed flowers along circuitous foraging routes. The evolution of traplining in hummingbirds is thought to entail morphological specialization through the reciprocal coevolution of longer bills with the long-tubed flowers of widely dispersed plant species. Specialization, such as that exhibited by traplining hummingbirds, is often viewed as both irreversible and an evolutionary dead end. We tested these predictions in a macroevolutionary framework. Specifically, we assessed the relationship between beak morphology and foraging and tested whether transitions to traplining are irreversible and lead to lower rates of diversification as predicted by the hypothesis that specialization is an evolutionary dead end. We find that there have been multiple independent transitions to traplining across the hummingbird phylogeny, but reversals have been rare or incomplete at best. Multiple independent lineages of trapliners have become morphologically specialized, convergently evolving relatively large bills for their body size. Traplining is not an evolutionary dead end however, since trapliners continue to give rise to new traplining species at a rate comparable to non-trapliners.


Subject(s)
Birds , Pollination , Animals , Birds/anatomy & histology , Flowers/anatomy & histology , Phylogeny , Plants
12.
Glob Chang Biol ; 28(2): 349-361, 2022 01.
Article in English | MEDLINE | ID: mdl-34558764

ABSTRACT

Anthropogenic activity is changing Earth's climate and ecosystems in ways that are potentially dangerous and disruptive to humans. Greenhouse gas concentrations in the atmosphere continue to rise, ensuring that these changes will be felt for centuries beyond 2100, the current benchmark for projection. Estimating the effects of past, current, and potential future emissions to only 2100 is therefore short-sighted. Critical problems for food production and climate-forced human migration are projected to arise well before 2100, raising questions regarding the habitability of some regions of the Earth after the turn of the century. To highlight the need for more distant horizon scanning, we model climate change to 2500 under a suite of emission scenarios and quantify associated projections of crop viability and heat stress. Together, our projections show global climate impacts increase significantly after 2100 without rapid mitigation. As a result, we argue that projections of climate and its effects on human well-being and associated governance and policy must be framed beyond 2100.


Subject(s)
Climate Change , Greenhouse Gases , Anthropogenic Effects , Atmosphere , Ecosystem , Humans
13.
Nat Ecol Evol ; 5(11): 1478-1489, 2021 11.
Article in English | MEDLINE | ID: mdl-34556829

ABSTRACT

Ecological communities face a variety of environmental and anthropogenic stressors acting simultaneously. Stressor impacts can combine additively or can interact, causing synergistic or antagonistic effects. Our knowledge of when and how interactions arise is limited, as most models and experiments only consider the effect of a small number of non-interacting stressors at one or few scales of ecological organization. This is concerning because it could lead to significant underestimations or overestimations of threats to biodiversity. Furthermore, stressors have been largely classified by their source rather than by the mechanisms and ecological scales at which they act (the target). Here, we argue, first, that a more nuanced classification of stressors by target and ecological scale can generate valuable new insights and hypotheses about stressor interactions. Second, that the predictability of multiple stressor effects, and consistent patterns in their impacts, can be evaluated by examining the distribution of stressor effects across targets and ecological scales. Third, that a variety of existing mechanistic and statistical modelling tools can play an important role in our framework and advance multiple stressor research.


Subject(s)
Anthropogenic Effects , Ecosystem , Biodiversity , Biota
14.
J Anim Ecol ; 90(6): 1398-1407, 2021 06.
Article in English | MEDLINE | ID: mdl-33825186

ABSTRACT

Approximately 25% of mammals are currently threatened with extinction, a risk that is amplified under climate change. Species persistence under climate change is determined by the combined effects of climatic factors on multiple demographic rates (survival, development and reproduction), and hence, population dynamics. Thus, to quantify which species and regions on Earth are most vulnerable to climate-driven extinction, a global understanding of how different demographic rates respond to climate is urgently needed. Here, we perform a systematic review of literature on demographic responses to climate, focusing on terrestrial mammals, for which extensive demographic data are available. To assess the full spectrum of responses, we synthesize information from studies that quantitatively link climate to multiple demographic rates. We find only 106 such studies, corresponding to 87 mammal species. These 87 species constitute <1% of all terrestrial mammals. Our synthesis reveals a strong mismatch between the locations of demographic studies and the regions and taxa currently recognized as most vulnerable to climate change. Surprisingly, for most mammals and regions sensitive to climate change, holistic demographic responses to climate remain unknown. At the same time, we reveal that filling this knowledge gap is critical as the effects of climate change will operate via complex demographic mechanisms: a vast majority of mammal populations display projected increases in some demographic rates but declines in others, often depending on the specific environmental context, complicating simple projections of population fates. Assessments of population viability under climate change are in critical need to gather data that account for multiple demographic responses, and coordinated actions to assess demography holistically should be prioritized for mammals and other taxa.


Subject(s)
Climate Change , Mammals , Animals , Population Dynamics
15.
Sci Total Environ ; 775: 145144, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33631565

ABSTRACT

Gut microbiota communities are fundamental ecological components in the aquatic food web. Their potential to mediate how organisms respond to multiple environmental stressors remains understudied. Here we explored how manipulations of the gut microbiome of Daphnia pulex, a keystone species in aquatic communities, influenced life history (size at maturity, age at maturity, somatic growth rate and clutch size), morphology (induced defence) and body condition (lipid status deposits) responses to combined anthropogenic (copper) and natural (predation risk) stress. Data from a factorial experiment revealed that the effect of predation risk on traits was often mediated by copper (predation risk and copper interact). These patterns align with theory linking predation risk and copper contamination via digestive physiology. We also found that each stressor, and their combination, was associated with the same community composition of the D. pulex microbiome. However, antibiotic manipulation of the microbiome reversed 7/12 the trait responses across life history, morphology and body condition. This was associated with dramatically different communities to control conditions, with clear and unique patterns of microbiome community composition for each stressor and their combination. Our study revealed that microbiome community composition is highly correlated with the response of organisms to multiple, simultaneous stressors.


Subject(s)
Microbiota , Predatory Behavior , Animals , Copper/toxicity , Daphnia
16.
Conserv Biol ; 35(4): 1210-1221, 2021 08.
Article in English | MEDLINE | ID: mdl-33068013

ABSTRACT

Phylogenetically informed imputation methods have rarely been applied to estimate missing values in demographic data but may be a powerful tool for reconstructing vital rates of survival, maturation, and fecundity for species of conservation concern. Imputed vital rates could be used to parameterize demographic models to explore how populations respond when vital rates are perturbed. We used standardized vital rate estimates for 50 bird species to assess the use of phylogenetic imputation to fill gaps in demographic data. We calculated imputation accuracy for vital rates of focal species excluded from the data set either singly or in combination and with and without phylogeny, body mass, and life-history trait data. We used imputed vital rates to calculate demographic metrics, including generation time, to validate the use of imputation in demographic analyses. Covariance among vital rates and other trait data provided a strong basis to guide imputation of missing vital rates in birds, even in the absence of phylogenetic information. Mean NRMSE for null and phylogenetic models differed by <0.01 except when no vital rates were available or for vital rates with high phylogenetic signal (Pagel's λ > 0.8). In these cases, including body mass and life-history trait data compensated for lack of phylogenetic information: mean normalized root mean square error (NRMSE) for null and phylogenetic models differed by <0.01 for adult survival and <0.04 for maturation rate. Estimates of demographic metrics were sensitive to the accuracy of imputed vital rates. For example, mean error in generation time doubled in response to inaccurate estimates of maturation time. Accurate demographic data and metrics, such as generation time, are needed to inform conservation planning processes, for example through International Union for Conservation of Nature Red List assessments and population viability analysis. Imputed vital rates could be useful in this context but, as for any estimated model parameters, awareness of the sensitivities of demographic model outputs to the imputed vital rates is essential.


Cerrando Brechas en los Análisis Demográficos con Imputación Filogenética Resumen Los métodos de imputación guiados filogenéticamente se han aplicado con poca frecuencia para estimar los valores faltantes en los datos demográficos, aunque pueden ser una herramienta poderosa para la reconstrucción de tasas vitales de supervivencia, maduración y fecundidad de especies de importancia para la conservación. Las tasas vitales imputadas podrían usarse para generar parámetros en los modelos demográficos para explorar cómo responden las poblaciones cuando se perturban las tasas vitales. Utilizamos estimaciones de tasas vitales estandarizadas para 50 especies de aves para analizar el uso de la imputación filogenética para llenar los vacíos en los datos demográficos. Calculamos la certeza de imputación para las tasas vitales de las especies focales excluidas del conjunto de datos por sí solas o en combinación y con y sin datos de filogenia, masa corporal y características de historia de vida. Usamos las tasas vitales imputadas para calcular las medidas demográficas, incluyendo el tiempo de generación, y así validar el uso de la imputación en los análisis demográficos. La covarianza entre las tasas vitales y otros datos de características proporcionó una base sólida para orientar la imputación de tasas vitales faltantes en las aves, incluso la ausencia de información filogenética. El NRMSE medio para los modelos nulo y filogenético difirió por <0.01 salvo cuando no hubo tasas vitales disponibles o para tasas vitales con una señal filogenética alta (λ de Pagel > 0.8). En estos casos, la inclusión de la masa corporal y las características de historia de vida compensó la falta de información filogenética: el error cuadrático medio de la raíz normalizada media (NRMSE) para los modelos nulo y filogenéticos difirió por <0.01 para la supervivencia adulta y <0.04 para la tasa de maduración. Las estimaciones de las medidas demográficas fueron sensibles a la certeza de las tasas vitales imputadas. Por ejemplo, el error medio en el tiempo generacional se duplicó en respuesta a las estimaciones imprecisas del tiempo de maduración. Las medidas y datos demográficos certeros, como el tiempo generacional, son necesarios para orientar los procesos de planeación de la conservación; por ejemplo, a través de las valoraciones de la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza y los análisis de viabilidad poblacional. Las tasas vitales imputadas podrían ser útiles en este contexto, pero como para cualquier tipo de parámetro de modelo estimado, el conocimiento de las sensibilidades del rendimiento del modelo demográfico es esencial para las tasas vitales imputadas.


Subject(s)
Birds , Conservation of Natural Resources , Animals , Demography , Fertility , Phylogeny
18.
Curr Biol ; 30(24): 4984-4988.e4, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33035481

ABSTRACT

The eco-evolutionary dynamics of microbial communities are predicted to affect both the tempo and trajectory of evolution in constituent species [1]. While community composition determines available niche space, species sorting dynamically alters composition, changing over time the distribution of vacant niches to which species adapt [2], altering evolutionary trajectories [3, 4]. Competition for the same niche can limit evolutionary potential if population size and mutation supply are reduced [5, 6] but, alternatively, could stimulate evolutionary divergence to exploit vacant niches if character displacement results from the coevolution of competitors [7, 8]. Under more complex ecological scenarios, species can create new niches through their exploitation of complex resources, enabling others to adapt to occupy these newly formed niches [9, 10]. Disentangling the drivers of natural selection within such communities is extremely challenging, and it is thus unclear how eco-evolutionary dynamics drive the evolution of constituent taxa. We tracked the metabolic evolution of a focal species during adaptation to wheat straw as a resource both in monoculture and in polycultures wherein on-going eco-evolutionary community dynamics were either permitted or prevented. Species interactions accelerated metabolic evolution. Eco-evolutionary dynamics drove increased use of recalcitrant substrates by the focal species, whereas greater exploitation of readily digested substrate niches created by other species evolved if on-going eco-evolutionary dynamics were prevented. Increased use of recalcitrant substrates was associated with parallel evolution of tctE, encoding a carbon metabolism regulator. Species interactions and species sorting set, respectively, the tempo and trajectory of evolutionary divergence among communities, selecting distinct ecological functions in otherwise equivalent ecosystems.


Subject(s)
Bacterial Proteins/metabolism , Evolution, Molecular , Microbiota/physiology , Stenotrophomonas/metabolism , Bacterial Proteins/genetics , Carbon/metabolism , Genome, Bacterial , Metabolic Networks and Pathways/genetics , Mutation , Stenotrophomonas/genetics
20.
Front Microbiol ; 11: 792, 2020.
Article in English | MEDLINE | ID: mdl-32457714

ABSTRACT

Microalgae can respond to natural cues from crustacean grazers, such as Daphnia, by forming colonies and aggregations called flocs. Combining microalgal biology, physiological ecology, and quantitative proteomics, we identified how infochemicals from Daphnia trigger physiological and cellular level changes in the microalga Scenedesmus subspicatus, underpinning colony formation and flocculation. We discovered that flocculation occurs at an energy-demanding 'alarm' phase, with an important role proposed in cysteine synthesis. Flocculation appeared to be initially stimulated by the production of an extracellular matrix where polysaccharides and fatty acids were present, and later sustained at an 'acclimation' stage through mitogen-activated protein kinase (MAPK) signaling cascades. Colony formation required investment into fatty acid metabolism, likely linked to separation of membranes during cell division. Higher energy demands were required at the alarm phase, which subsequently decreased at the acclimation stage, thus suggesting a trade-off between colony formation and flocculation. From an ecological and evolutionary perspective, our findings represent an improved understanding of the effect of infochemicals on microalgae-grazers interactions, and how they can therefore potentially impact on the structure of aquatic communities. Moreover, the mechanisms revealed are of interest in algal biotechnology, for exploitation in low-cost, sustainable microalgal biomass harvesting.

SELECTION OF CITATIONS
SEARCH DETAIL
...