Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
Cell ; 187(5): 1314-1314.e1, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428399

ABSTRACT

Ribosome production is essential for cell growth. Approximately 200 assembly factors drive this complicated pathway that starts in the nucleolus and ends in the cytoplasm. A large number of structural snapshots of the pre-60S pathway have revealed the principles behind large subunit synthesis. To view this SnapShot, open or download the PDF.


Subject(s)
Cell Nucleolus , Eukaryotic Cells , Ribosomes , Cell Nucleolus/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/chemistry , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosomes/metabolism , Eukaryotic Cells/chemistry , Eukaryotic Cells/cytology , Eukaryotic Cells/metabolism
2.
J Mol Biol ; 436(6): 168496, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38365086

ABSTRACT

Stalling of ribosomes engaged in protein synthesis can lead to significant defects in the function of newly synthesized proteins and thereby impair protein homeostasis. Consequently, partially synthesized polypeptides resulting from translation stalling are recognized and eliminated by several quality control mechanisms. First, if translation elongation reactions are halted prematurely, a quality control mechanism called ribosome-associated quality control (RQC) initiates the ubiquitination of the nascent polypeptide chain and subsequent proteasomal degradation. Additionally, when ribosomes with defective codon recognition or peptide-bond formation stall during translation, a quality control mechanism known as non-functional ribosomal RNA decay (NRD) leads to the degradation of malfunctioning ribosomes. In both of these quality control mechanisms, E3 ubiquitin ligases selectively recognize ribosomes in distinct translation-stalling states and ubiquitinate specific ribosomal proteins. Significant efforts have been devoted to characterize E3 ubiquitin ligase sensing of ribosome 'collision' or 'stalling' and subsequent ribosome is rescued. This article provides an overview of our current understanding of the molecular mechanisms and physiological functions of ribosome dynamics control and quality control of abnormal translation.


Subject(s)
Peptide Chain Elongation, Translational , RNA Stability , Ribosomes , Peptides/metabolism , Ribosomal Proteins/genetics , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Humans , Animals , RNA, Messenger/metabolism
3.
Nature ; 627(8003): 445-452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383785

ABSTRACT

Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.


Subject(s)
Endoplasmic Reticulum , Protein Processing, Post-Translational , Ribosome Subunits, Large, Eukaryotic , Ubiquitin-Protein Ligases , Binding Sites , Biocatalysis , Cryoelectron Microscopy , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Intracellular Membranes/chemistry , Intracellular Membranes/metabolism , Intracellular Membranes/ultrastructure , Peptidyl Transferases/chemistry , Peptidyl Transferases/metabolism , Peptidyl Transferases/ultrastructure , Protein Binding , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Ribosomal Proteins/ultrastructure , Ribosome Subunits, Large, Eukaryotic/chemistry , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosome Subunits, Large, Eukaryotic/ultrastructure , RNA, Transfer/metabolism , Substrate Specificity , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure
4.
EMBO J ; 43(4): 484-506, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177497

ABSTRACT

Stalled ribosomes are rescued by pathways that recycle the ribosome and target the nascent polypeptide for degradation. In E. coli, these pathways are triggered by ribosome collisions through the recruitment of SmrB, a nuclease that cleaves the mRNA. In B. subtilis, the related protein MutS2 was recently implicated in ribosome rescue. Here we show that MutS2 is recruited to collisions by its SMR and KOW domains, and we reveal the interaction of these domains with collided ribosomes by cryo-EM. Using a combination of in vivo and in vitro approaches, we show that MutS2 uses its ABC ATPase activity to split ribosomes, targeting the nascent peptide for degradation through the ribosome quality control pathway. However, unlike SmrB, which cleaves mRNA in E. coli, we see no evidence that MutS2 mediates mRNA cleavage or promotes ribosome rescue by tmRNA. These findings clarify the biochemical and cellular roles of MutS2 in ribosome rescue in B. subtilis and raise questions about how these pathways function differently in diverse bacteria.


Subject(s)
Bacillus subtilis , Protein Biosynthesis , RNA, Messenger/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Ribosomes/metabolism , Peptides/metabolism
5.
Mol Cell ; 83(23): 4290-4303.e9, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37951216

ABSTRACT

Reactive aldehydes are abundant endogenous metabolites that challenge homeostasis by crosslinking cellular macromolecules. Aldehyde-induced DNA damage requires repair to prevent cancer and premature aging, but it is unknown whether cells also possess mechanisms that resolve aldehyde-induced RNA lesions. Here, we establish photoactivatable ribonucleoside-enhanced crosslinking (PAR-CL) as a model system to study RNA crosslinking damage in the absence of confounding DNA damage in human cells. We find that such RNA damage causes translation stress by stalling elongating ribosomes, which leads to collisions with trailing ribosomes and activation of multiple stress response pathways. Moreover, we discovered a translation-coupled quality control mechanism that resolves covalent RNA-protein crosslinks. Collisions between translating ribosomes and crosslinked mRNA-binding proteins trigger their modification with atypical K6- and K48-linked ubiquitin chains. Ubiquitylation requires the E3 ligase RNF14 and leads to proteasomal degradation of the protein adduct. Our findings identify RNA lesion-induced translational stress as a central component of crosslinking damage.


Subject(s)
RNA , Ubiquitin , Humans , RNA/metabolism , Ubiquitination , Ubiquitin/metabolism , Ribosomes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Aldehydes , Protein Biosynthesis
6.
EMBO Rep ; 24(12): e57984, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37921038

ABSTRACT

The rixosome defined in Schizosaccharomyces pombe and humans performs diverse roles in pre-ribosomal RNA processing and gene silencing. Here, we isolate and describe the conserved rixosome from Chaetomium thermophilum, which consists of two sub-modules, the sphere-like Rix1-Ipi3-Ipi1 and the butterfly-like Las1-Grc3 complex, connected by a flexible linker. The Rix1 complex of the rixosome utilizes Sda1 as landing platform on nucleoplasmic pre-60S particles to wedge between the 5S rRNA tip and L1-stalk, thereby facilitating the 180° rotation of the immature 5S RNP towards its mature conformation. Upon rixosome positioning, the other sub-module with Las1 endonuclease and Grc3 polynucleotide-kinase can reach a strategic position at the pre-60S foot to cleave and 5' phosphorylate the nearby ITS2 pre-rRNA. Finally, inward movement of the L1 stalk permits the flexible Nop53 N-terminus with its AIM motif to become positioned at the base of the L1-stalk to facilitate Mtr4 helicase-exosome participation for completing ITS2 removal. Thus, the rixosome structure elucidates the coordination of two central ribosome biogenesis events, but its role in gene silencing may adapt similar strategies.


Subject(s)
Saccharomyces cerevisiae Proteins , Schizosaccharomyces , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Nuclear Proteins/metabolism , Rotation , RNA, Ribosomal/metabolism , Ribosomes/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , RNA Processing, Post-Transcriptional , Ribosomal Proteins/genetics
7.
Nat Struct Mol Biol ; 30(8): 1119-1131, 2023 08.
Article in English | MEDLINE | ID: mdl-37291423

ABSTRACT

The 5S ribonucleoprotein (RNP) is assembled from its three components (5S rRNA, Rpl5/uL18 and Rpl11/uL5) before being incorporated into the pre-60S subunit. However, when ribosome synthesis is disturbed, a free 5S RNP can enter the MDM2-p53 pathway to regulate cell cycle and apoptotic signaling. Here we reconstitute and determine the cryo-electron microscopy structure of the conserved hexameric 5S RNP with fungal or human factors. This reveals how the nascent 5S rRNA associates with the initial nuclear import complex Syo1-uL18-uL5 and, upon further recruitment of the nucleolar factors Rpf2 and Rrs1, develops into the 5S RNP precursor that can assemble into the pre-ribosome. In addition, we elucidate the structure of another 5S RNP intermediate, carrying the human ubiquitin ligase Mdm2, which unravels how this enzyme can be sequestered from its target substrate p53. Our data provide molecular insight into how the 5S RNP can mediate between ribosome biogenesis and cell proliferation.


Subject(s)
RNA, Ribosomal, 5S , Tumor Suppressor Protein p53 , Humans , RNA, Ribosomal, 5S/chemistry , Tumor Suppressor Protein p53/metabolism , Cryoelectron Microscopy , Ribosomal Proteins/metabolism , Ribonucleoproteins/metabolism , Ribosomes/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism
8.
Cell ; 186(10): 2282-2282.e1, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37172570

ABSTRACT

Ribosome production is vital for every cell, and failure causes human diseases. It is driven by ∼200 assembly factors functioning along an ordered pathway from the nucleolus to the cytoplasm. Structural snapshots of biogenesis intermediates from the earliest 90S pre-ribosomes to mature 40S subunits unravel the mechanisms of small ribosome synthesis. To view this SnapShot, open or download the PDF.


Subject(s)
Eukaryotic Cells , Ribosomes , Humans , Cell Nucleolus/metabolism , Eukaryotic Cells/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Small, Eukaryotic/chemistry , Ribosome Subunits, Small, Eukaryotic/metabolism , Ribosomes/metabolism
9.
Nat Commun ; 14(1): 2730, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37169754

ABSTRACT

In actively translating 80S ribosomes the ribosomal protein eS7 of the 40S subunit is monoubiquitinated by the E3 ligase Not4 and deubiquitinated by Otu2 upon ribosomal subunit recycling. Despite its importance for translation efficiency the exact role and structural basis for this translational reset is poorly understood. Here, structural analysis by cryo-electron microscopy of native and reconstituted Otu2-bound ribosomal complexes reveals that Otu2 engages 40S subunits mainly between ribosome recycling and initiation stages. Otu2 binds to several sites on the intersubunit surface of the 40S that are not occupied by any other 40S-binding factors. This binding mode explains the discrimination against 80S ribosomes via the largely helical N-terminal domain of Otu2 as well as the specificity for mono-ubiquitinated eS7 on 40S. Collectively, this study reveals mechanistic insights into the Otu2-driven deubiquitination steps for translational reset during ribosome recycling/(re)initiation.


Subject(s)
Ribosomal Proteins , Ribosomes , Cryoelectron Microscopy , Protein Biosynthesis , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism , Ribosomes/metabolism
10.
EMBO Rep ; 24(7): e56910, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37129998

ABSTRACT

Ribosome biogenesis proceeds along a multifaceted pathway from the nucleolus to the cytoplasm that is extensively coupled to several quality control mechanisms. However, the mode by which 5S ribosomal RNA is incorporated into the developing pre-60S ribosome, which in humans links ribosome biogenesis to cell proliferation by surveillance by factors such as p53-MDM2, is poorly understood. Here, we report nine nucleolar pre-60S cryo-EM structures from Chaetomium thermophilum, one of which clarifies the mechanism of 5S RNP incorporation into the early pre-60S. Successive assembly states then represent how helicases Dbp10 and Spb4, and the Pumilio domain factor Puf6 act in series to surveil the gradual folding of the nearby 25S rRNA domain IV. Finally, the methyltransferase Spb1 methylates a universally conserved guanine nucleotide in the A-loop of the peptidyl transferase center, thereby licensing further maturation. Our findings provide insight into the hierarchical action of helicases in safeguarding rRNA tertiary structure folding and coupling to surveillance mechanisms that culminate in local RNA modification.


Subject(s)
RNA, Ribosomal , Saccharomyces cerevisiae Proteins , Humans , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Ribosomes/genetics , RNA, Ribosomal, 5S/genetics , RNA, Ribosomal, 5S/metabolism , DNA Helicases/metabolism , Protein Binding , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism
11.
bioRxiv ; 2023 May 06.
Article in English | MEDLINE | ID: mdl-37205477

ABSTRACT

Stalled ribosomes are rescued by pathways that recycle the ribosome and target the nascent polypeptide for degradation. In E. coli, these pathways are triggered by ribosome collisions through recruitment of SmrB, a nuclease that cleaves the mRNA. In B. subtilis, the related protein MutS2 was recently implicated in ribosome rescue. Here we show that MutS2 is recruited to collisions by its SMR and KOW domains and reveal the interaction of these domains with collided ribosomes by cryo-EM. Using a combination of in vivo and in vitro approaches, we show that MutS2 uses its ABC ATPase activity to split ribosomes, targeting the nascent peptide for degradation by the ribosome quality control pathway. Notably, we see no evidence of mRNA cleavage by MutS2, nor does it promote ribosome rescue by tmRNA as SmrB cleavage does in E. coli. These findings clarify the biochemical and cellular roles of MutS2 in ribosome rescue in B. subtilis and raise questions about how these pathways function differently in various bacteria.

12.
PLoS Biol ; 21(4): e3001995, 2023 04.
Article in English | MEDLINE | ID: mdl-37079644

ABSTRACT

Cotranslational modification of the nascent polypeptide chain is one of the first events during the birth of a new protein. In eukaryotes, methionine aminopeptidases (MetAPs) cleave off the starter methionine, whereas N-acetyl-transferases (NATs) catalyze N-terminal acetylation. MetAPs and NATs compete with other cotranslationally acting chaperones, such as ribosome-associated complex (RAC), protein targeting and translocation factors (SRP and Sec61) for binding sites at the ribosomal tunnel exit. Yet, whereas well-resolved structures for ribosome-bound RAC, SRP and Sec61, are available, structural information on the mode of ribosome interaction of eukaryotic MetAPs or of the five cotranslationally active NATs is only available for NatA. Here, we present cryo-EM structures of yeast Map1 and NatB bound to ribosome-nascent chain complexes. Map1 is mainly associated with the dynamic rRNA expansion segment ES27a, thereby kept at an ideal position below the tunnel exit to act on the emerging substrate nascent chain. For NatB, we observe two copies of the NatB complex. NatB-1 binds directly below the tunnel exit, again involving ES27a, and NatB-2 is located below the second universal adapter site (eL31 and uL22). The binding mode of the two NatB complexes on the ribosome differs but overlaps with that of NatA and Map1, implying that NatB binds exclusively to the tunnel exit. We further observe that ES27a adopts distinct conformations when bound to NatA, NatB, or Map1, together suggesting a contribution to the coordination of a sequential activity of these factors on the emerging nascent chain at the ribosomal exit tunnel.


Subject(s)
Peptides , Ribosomes , Ribosomes/metabolism , Peptides/chemistry , RNA, Ribosomal/metabolism , Binding Sites , Saccharomyces cerevisiae/genetics , Methionine/metabolism , Protein Biosynthesis , Acetyltransferases/analysis , Acetyltransferases/genetics , Acetyltransferases/metabolism
13.
Elife ; 122023 03 17.
Article in English | MEDLINE | ID: mdl-36929751

ABSTRACT

Biogenesis intermediates of nucleolar ribosomal 60S precursor particles undergo a number of structural maturation steps before they transit to the nucleoplasm and are finally exported into the cytoplasm. The AAA+-ATPase Rea1 participates in the nucleolar exit by releasing the Ytm1-Erb1 heterodimer from the evolving pre-60S particle. Here, we show that the DEAD-box RNA helicase Spb4 with its interacting partner Rrp17 is further integrated into this maturation event. Spb4 binds to a specific class of late nucleolar pre-60S intermediates, whose cryo-EM structure revealed how its helicase activity facilitates melting and restructuring of 25S rRNA helices H62 and H63/H63a prior to Ytm1-Erb1 release. In vitro maturation of such Spb4-enriched pre-60S particles, incubated with purified Rea1 and its associated pentameric Rix1-complex in the presence of ATP, combined with cryo-EM analysis depicted the details of the Rea1-dependent large-scale pre-ribosomal remodeling. Our structural insights unveil how the Rea1 ATPase and Spb4 helicase remodel late nucleolar pre-60S particles by rRNA restructuring and dismantling of a network of several ribosomal assembly factors.


Subject(s)
Adenosine Triphosphatases , Saccharomyces cerevisiae Proteins , Adenosine Triphosphatases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , RNA Helicases/metabolism , RNA, Ribosomal/metabolism , Ribosomes/metabolism , RNA Precursors/metabolism , Ribosomal Proteins/genetics
14.
Nat Commun ; 14(1): 921, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36801861

ABSTRACT

Translation of aberrant messenger RNAs can cause stalling of ribosomes resulting in ribosomal collisions. Collided ribosomes are specifically recognized to initiate stress responses and quality control pathways. Ribosome-associated quality control facilitates the degradation of incomplete translation products and requires dissociation of the stalled ribosomes. A central event is therefore the splitting of collided ribosomes by the ribosome quality control trigger complex, RQT, by an unknown mechanism. Here we show that RQT requires accessible mRNA and the presence of a neighboring ribosome. Cryogenic electron microscopy of RQT-ribosome complexes reveals that RQT engages the 40S subunit of the lead ribosome and can switch between two conformations. We propose that the Ski2-like helicase 1 (Slh1) subunit of RQT applies a pulling force on the mRNA, causing destabilizing conformational changes of the small ribosomal subunit, ultimately resulting in subunit dissociation. Our findings provide conceptual framework for a helicase-driven ribosomal splitting mechanism.


Subject(s)
DNA Helicases , Ribosomes , Ubiquitination , Ribosomes/metabolism , DNA Helicases/metabolism , RNA, Messenger/metabolism , Protein Biosynthesis
15.
Mol Cell ; 83(4): 607-621.e4, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36804914

ABSTRACT

Ribosome-associated quality control (RQC) is a conserved process degrading potentially toxic truncated nascent peptides whose malfunction underlies neurodegeneration and proteostasis decline in aging. During RQC, dissociation of stalled ribosomes is followed by elongation of the nascent peptide with alanine and threonine residues, driven by Rqc2 independently of mRNA, the small ribosomal subunit and guanosine triphosphate (GTP)-hydrolyzing factors. The resulting CAT tails (carboxy-terminal tails) and ubiquitination by Ltn1 mark nascent peptides for proteasomal degradation. Here we present ten cryogenic electron microscopy (cryo-EM) structures, revealing the mechanistic basis of individual steps of the CAT tailing cycle covering initiation, decoding, peptidyl transfer, and tRNA translocation. We discovered eIF5A as a crucial eukaryotic RQC factor enabling peptidyl transfer. Moreover, we observed dynamic behavior of RQC factors and tRNAs allowing for processivity of the CAT tailing cycle without additional energy input. Together, these results elucidate key differences as well as common principles between CAT tailing and canonical translation.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Protein Biosynthesis , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Peptides/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism , Quality Control
16.
Cancer Discov ; 13(2): 332-347, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36259929

ABSTRACT

The development and regulation of malignant self-renewal remain unresolved issues. Here, we provide biochemical, genetic, and functional evidence that dynamics in ribosomal RNA (rRNA) 2'-O-methylation regulate leukemia stem cell (LSC) activity in vivo. A comprehensive analysis of the rRNA 2'-O-methylation landscape of 94 patients with acute myeloid leukemia (AML) revealed dynamic 2'-O-methylation specifically at exterior sites of ribosomes. The rRNA 2'-O-methylation pattern is closely associated with AML development stage and LSC gene expression signature. Forced expression of the 2'-O-methyltransferase fibrillarin (FBL) induced an AML stem cell phenotype and enabled engraftment of non-LSC leukemia cells in NSG mice. Enhanced 2'-O-methylation redirected the ribosome translation program toward amino acid transporter mRNAs enriched in optimal codons and subsequently increased intracellular amino acid levels. Methylation at the single site 18S-guanosine 1447 was instrumental for LSC activity. Collectively, our work demonstrates that dynamic 2'-O-methylation at specific sites on rRNAs shifts translational preferences and controls AML LSC self-renewal. SIGNIFICANCE: We establish the complete rRNA 2'-O-methylation landscape in human AML. Plasticity of rRNA 2'-O-methylation shifts protein translation toward an LSC phenotype. This dynamic process constitutes a novel concept of how cancers reprogram cell fate and function. This article is highlighted in the In This Issue feature, p. 247.


Subject(s)
Leukemia, Myeloid, Acute , RNA, Ribosomal , Humans , Animals , Mice , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Leukemia, Myeloid, Acute/pathology , Ribosomes/genetics , Ribosomes/metabolism , Methylation , Phenotype , Neoplastic Stem Cells/metabolism
17.
Nucleic Acids Res ; 51(1): 253-270, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36583309

ABSTRACT

Ribosome collisions are recognized by E3 ubiquitin ligase Hel2/ZNF598, leading to RQC (ribosome-associated quality control) and to endonucleolytic cleavage and degradation of the mRNA termed NGD (no-go decay). NGD in yeast requires the Cue2 endonuclease and occurs in two modes, either coupled to RQC (NGDRQC+) or RQC uncoupled (NGDRQC-). This is mediated by an unknown mechanism of substrate recognition by Cue2. Here, we show that the ubiquitin binding activity of Cue2 is required for NGDRQC- but not for NGDRQC+, and that it involves the first two N-terminal Cue domains. In contrast, Trp122 of Cue2 is crucial for NGDRQC+. Moreover, Mbf1 is required for quality controls by preventing +1 ribosome frameshifting induced by a rare codon staller. We propose that in Cue2-dependent cleavage upstream of the collided ribosomes (NGDRQC-), polyubiquitination of eS7 is recognized by two N-terminal Cue domains of Cue2. In contrast, for the cleavage within collided ribosomes (NGDRQC+), the UBA domain, Trp122 and the interaction between Mbf1 and uS3 are critical.


Subject(s)
Endonucleases , Saccharomyces cerevisiae Proteins , Protein Biosynthesis , Ribosomes/genetics , Ribosomes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Endonucleases/metabolism
18.
Cell Rep ; 41(8): 111684, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36417864

ABSTRACT

Ribosome synthesis begins in the nucleolus with 90S pre-ribosome construction, but little is known about how the many different snoRNAs that modify the pre-rRNA are timely guided to their target sites. Here, we report a role for Cms1 in such a process. Initially, we discovered CMS1 as a null suppressor of a nop14 mutant impaired in Rrp12-Enp1 factor recruitment to the 90S. Further investigations detected Cms1 at the 18S rRNA 3' major domain of an early 90S that carried H/ACA snR83, which is known to guide pseudouridylation at two target sites within the same subdomain. Cms1 co-precipitates with many 90S factors, but Rrp12-Enp1 encircling the 3' major domain in the mature 90S is decreased. We suggest that Cms1 associates with the 3' major domain during early 90S biogenesis to restrict premature Rrp12-Enp1 binding but allows snR83 to timely perform its modification role before the next 90S assembly steps coupled with Cms1 release take place.


Subject(s)
Cell Nucleolus , Ribosomes , Ribosomes/metabolism , Cell Nucleolus/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Small Nucleolar/metabolism
19.
Immunity ; 55(12): 2271-2284.e7, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36384135

ABSTRACT

The NLRP3 inflammasome plays a central role in antimicrobial defense as well as in the context of sterile inflammatory conditions. NLRP3 activity is governed by two independent signals: the first signal primes NLRP3, rendering it responsive to the second signal, which then triggers inflammasome formation. Our understanding of how NLRP3 priming contributes to inflammasome activation remains limited. Here, we show that IKKß, a kinase activated during priming, induces recruitment of NLRP3 to phosphatidylinositol-4-phosphate (PI4P), a phospholipid enriched on the trans-Golgi network. NEK7, a mitotic spindle kinase that had previously been thought to be indispensable for NLRP3 activation, was redundant for inflammasome formation when IKKß recruited NLRP3 to PI4P. Studying iPSC-derived human macrophages revealed that the IKKß-mediated NEK7-independent pathway constitutes the predominant NLRP3 priming mechanism in human myeloid cells. Our results suggest that PI4P binding represents a primed state into which NLRP3 is brought by IKKß activity.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , I-kappa B Kinase , Inflammasomes/metabolism , Mice, Inbred C57BL , NIMA-Related Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Serine-Threonine Kinases/metabolism , trans-Golgi Network/metabolism
20.
Nucleic Acids Res ; 50(20): 11924-11937, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36321656

ABSTRACT

Biogenesis of the small ribosomal subunit in eukaryotes starts in the nucleolus with the formation of a 90S precursor and ends in the cytoplasm. Here, we elucidate the enigmatic structural transitions of assembly intermediates from human and yeast cells during the nucleoplasmic maturation phase. After dissociation of all 90S factors, the 40S body adopts a close-to-mature conformation, whereas the 3' major domain, later forming the 40S head, remains entirely immature. A first coordination is facilitated by the assembly factors TSR1 and BUD23-TRMT112, followed by re-positioning of RRP12 that is already recruited early to the 90S for further head rearrangements. Eventually, the uS2 cluster, CK1 (Hrr25 in yeast) and the export factor SLX9 associate with the pre-40S to provide export competence. These exemplary findings reveal the evolutionary conserved mechanism of how yeast and humans assemble the 40S ribosomal subunit, but reveal also a few minor differences.


Subject(s)
Active Transport, Cell Nucleus , Ribosomal Proteins , Ribosome Subunits, Small, Eukaryotic , Saccharomyces cerevisiae Proteins , Humans , Casein Kinase I/analysis , Casein Kinase I/metabolism , Methyltransferases/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...