Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Infect Dis ; 3(5): 349-359, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28215073

ABSTRACT

In 2013, the Centers for Disease Control highlighted Clostridium difficile as an urgent threat for antibiotic-resistant infections, in part due to the emergence of highly virulent fluoroquinolone-resistant strains. Limited therapeutic options currently exist, many of which result in disease relapse. We sought to identify molecules specifically targeting C. difficile in high-throughput screens of our diversity-oriented synthesis compound collection. We identified two scaffolds with apparently novel mechanisms of action that selectively target C. difficile while having little to no activity against other intestinal anaerobes; preliminary evidence suggests that compounds from one of these scaffolds target the glutamate racemase. In vivo efficacy data suggest that both compound series may provide lead optimization candidates.


Subject(s)
Amino Acid Isomerases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Clostridioides difficile/drug effects , Enterocolitis, Pseudomembranous/drug therapy , Heterocyclic Compounds, 2-Ring/pharmacology , Phenylurea Compounds/pharmacology , Pyrroles/pharmacology , Quinolines/pharmacology , Amino Acid Isomerases/genetics , Amino Acid Isomerases/metabolism , Animals , Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Clostridioides difficile/enzymology , Clostridioides difficile/genetics , Clostridioides difficile/growth & development , Drug Design , Enterocolitis, Pseudomembranous/microbiology , Enterocolitis, Pseudomembranous/mortality , Enterocolitis, Pseudomembranous/pathology , Female , Gene Expression , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Heterocyclic Compounds, 2-Ring/chemical synthesis , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Phenylurea Compounds/chemical synthesis , Pyrroles/chemical synthesis , Quinolines/chemical synthesis , Species Specificity , Structure-Activity Relationship , Survival Analysis
4.
Bioorg Med Chem Lett ; 24(3): 917-22, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24412110

ABSTRACT

The optimization of a novel series of non-nucleoside reverse transcriptase inhibitors (NNRTI) led to the identification of pyridone 36. In cell cultures, this new NNRTI shows a superior potency profile against a range of wild type and clinically relevant, resistant mutant HIV viruses. The overall favorable preclinical pharmacokinetic profile of 36 led to the prediction of a once daily low dose regimen in human. NNRTI 36, now known as MK-1439, is currently in clinical development for the treatment of HIV infection.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Discovery , Drug Resistance, Viral/drug effects , HIV-1/drug effects , Pyridones/chemistry , Pyridones/pharmacology , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Animals , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Cells, Cultured , Crystallography, X-Ray , Dogs , HIV-1/genetics , Humans , Inhibitory Concentration 50 , Molecular Structure , Mutation , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Inhibitors/chemistry
5.
Front Oncol ; 2: 100, 2012.
Article in English | MEDLINE | ID: mdl-22912935

ABSTRACT

PURPOSE: Folate is essential to DNA methylation and synthesis and may have a complex dualistic role in prostate cancer. Alcohol use may increase risk and epigenetic factors may interact with lifestyle exposures. We aimed to characterize the independent and joint effects of folate intake, alcohol consumption, and the MTHFR C677T gene polymorphism on prostate cancer risk, while accounting for intakes of vitamins B(2), B(6), B(12), methionine, total energy, and confounders. METHODS: A case-control study was conducted at Kingston General Hospital of 80 incident primary prostate cancer cases and 334 urology clinic controls, all with normal age-specific PSA levels (to exclude latent prostate cancers). Participants completed a questionnaire on folate and alcohol intakes and potential confounders prior to knowledge of diagnosis, eliminating recall bias, and blood was drawn for MTHFR genotyping. Joint effects of exposures were assessed using unconditional logistic regression and significance of multiplicative and additive interactions using general linear models. RESULTS: Folate, vitamins B(2), B(6), B(12), methionine, and the CT and TT genotypes were not associated with prostate cancer risk. The highest tertile of lifetime alcohol consumption was associated with increased risk (OR = 2.08; 95% CI: 1.12-3.86). Consumption of >5 alcoholic drinks per week was associated with increased prostate cancer risk among men with low folate intake (OR = 2.38; 95% CI: 1.01-5.57), and higher risk among those with the CC MTHFR genotype (OR = 4.43; 95% CI: 1.15-17.05). Increased risk was also apparent for average weekly alcohol consumption when accounting for the multiplicative interaction between folate intake and MTHFR C677T genotype (OR = 3.22; 95% CI: 1.36-7.59). CONCLUSION: Alcohol consumption is associated with increased prostate cancer risk, and this association is stronger among men with low folate intake, with the CC MTHFR genotype, and when accounting for the joint effect of folate intake and MTHFR C677T genotype.

7.
Cancer Lett ; 260(1-2): 48-55, 2008 Feb 18.
Article in English | MEDLINE | ID: mdl-18037231

ABSTRACT

The tobacco-specific lung carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) forms DNA methylating and pyridyloxobutylating species. In this study, the involvement of nucleotide excision repair (NER) in the repair of pyridyloxobutyl adducts was assessed using an in vitro NER assay with pyridyloxobutylated plasmid DNA. Nuclear extracts from NER-deficient xeroderma pigmentosum (XP) cells, XPA and XPC, were less active at repairing pyridyloxobutyl adducts than were extracts from normal cells, while combining NER-deficient extracts reconstituted activity. Also, NER-deficient cells were more susceptible to NNKOAc-induced cytotoxicity than were normal cells. Results demonstrate a role for NER in the repair of NNK-induced pyridyloxobutylation.


Subject(s)
Carcinogens/toxicity , Cell Nucleus/drug effects , DNA Adducts/metabolism , DNA Repair , Nitrosamines/toxicity , Xeroderma Pigmentosum/enzymology , Cell Line, Tumor , Cell Nucleus/enzymology , Cell Nucleus/radiation effects , Cell Survival/drug effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Pyridines/toxicity , Time Factors , Ultraviolet Rays , Xeroderma Pigmentosum/genetics , Xeroderma Pigmentosum/pathology , Xeroderma Pigmentosum Group A Protein/genetics , Xeroderma Pigmentosum Group A Protein/metabolism
8.
Drug Metab Dispos ; 35(11): 2086-94, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17717079

ABSTRACT

The objectives of this study were to determine the contributions of CYP2A13 and CYP2A6 to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism in human peripheral lung microsomes and to determine the influence of the genetic polymorphism, CYP2A13 Arg257Cys, on NNK metabolism. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), the keto-reduced metabolite of NNK, was the major metabolite produced, ranging from 0.28 to 0.9%/mg protein/min. Based on total bioactivation of NNK and NNAL by alpha-carbon hydroxylation, subjects could be classified as either high (17 subjects) or low (12 subjects) bioactivators [(5.26 +/- 1.23) x 10(-2) and (6.49 +/- 5.90) x 10(-3)% total alpha-hydroxylation/mg protein/min, P < 0.05]. Similarly, for detoxification, subjects could be grouped into high (9 subjects) and low (20 subjects) categories [(2.03 +/- 1.65) x 10(-3) and (2.50 +/- 3.04) x 10(-4)% total N-oxidation/mg protein/min, P < 0.05]. When examining data from all individuals, no significant correlations were found between levels of CYP2A mRNA, CYP2A enzyme activity, or CYP2A immunoinhibition and the degree of total NNK bioactivation or detoxification (P > 0.05). However, subgroups of individuals were identified for whom CYP2A13 mRNA correlated with total NNK and NNAL alpha-hydroxylation and NNAL-N-oxide formation (P < 0.05). The degree of NNAL formation and CYP2A13 mRNA was also correlated (P < 0.05). Subjects (n = 84) were genotyped for the CYP2A13 Arg257Cys polymorphism, and NNK metabolism for the one variant (Arg/Cys) was similar to that for other subjects. Although results do not support CYP2A13 or CYP2A6 as predominant contributors to NNK bioactivation and detoxification in peripheral lung of all individuals, CYP2A13 may be important in some.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Lung/enzymology , Microsomes/enzymology , Nitrosamines/metabolism , Steroid Hydroxylases/metabolism , Aged , Aryl Hydrocarbon Hydroxylases/genetics , Biotransformation , Cytochrome P-450 CYP2A6 , Female , Gene Expression , Genotype , Glycols/metabolism , Humans , Hydroxy Acids/metabolism , Hydroxylation , Keto Acids/metabolism , Lung/metabolism , Male , Microsomes/metabolism , Middle Aged , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Structure , Nitrosamines/chemistry , Nitrosamines/pharmacokinetics , Oxidation-Reduction , Polymorphism, Single Nucleotide , Pyridines/chemistry , Pyridines/metabolism , Pyridines/pharmacokinetics , Smoking/metabolism , Steroid Hydroxylases/genetics
9.
Toxicol Sci ; 98(1): 57-62, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17400578

ABSTRACT

Aflatoxin B(1) (AFB(1)) is a mycotoxin produced by some strains of Aspergillus and is a recognized pulmonary and hepatic carcinogen. The most widely accepted mechanism of AFB(1) carcinogenicity involves bioactivation to AFB(1)-8,9-exo-epoxide and binding to DNA to form AFB(1)-N(7)-guanine. Another potential cause of DNA damage is AFB(1)-mediated stimulation of reactive oxygen species formation, leading to oxidation of DNA bases. The objective of this study was to determine the ability of AFB(1) to cause oxidative DNA damage in lung cell types of the A/J mouse. The formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in freshly isolated mouse lung alveolar macrophages, alveolar type II cells, and nonciliated bronchial epithelial (Clara) cells was assessed by high-performance liquid chromatography with electrochemical detection. An approximately 3-fold increase in 8-OHdG formation occurred in both alveolar macrophage and Clara cell preparations isolated from A/J mice 2 h following treatment with a single tumorigenic dose of 50 mg/kg AFB(1) ip (n = 3, p < 0.05). Prior treatment with 300 kU/kg polyethylene glycol-conjugated catalase prevented the AFB(1)-induced increase in 8-OHdG levels in all mouse lung cell preparations (n = 3, p < 0.05). These results support the possibility that oxidative DNA damage in mouse lung cells contributes to AFB(1) carcinogenicity.


Subject(s)
Aflatoxin B1/toxicity , DNA/metabolism , Deoxyguanosine/analogs & derivatives , Lung/drug effects , Lung/metabolism , Mutagens/toxicity , 8-Hydroxy-2'-Deoxyguanosine , Animals , Catalase/metabolism , Cell Separation , Chromatography, High Pressure Liquid , Data Interpretation, Statistical , Deoxyguanosine/metabolism , Electrochemistry , Female , In Vitro Techniques , Lung/cytology , Mice , Mice, Inbred A , Oxidative Stress/drug effects
10.
Toxicol Appl Pharmacol ; 220(1): 60-71, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17316728

ABSTRACT

Amiodarone (AM), an antidysrrhythmic drug, can produce serious adverse effects, including potentially fatal AM-induced pulmonary toxicity (AIPT). AM-induced cytotoxicity and pulmonary fibrosis are well recognized, but poorly understood mechanistically. The hypothesis of aryl radical involvement in AM toxicity was tested in non-biological and biological systems. Photolysis of anaerobic aqueous solutions of AM, or N-desethylamiodarone (DEA) resulted in the formation of an aryl radical, as determined by spin-trapping and electron paramagnetic resonance (EPR) spectroscopy experiments. The non-iodinated AM analogue, didesiodoamiodarone (DDIA), did not form aryl radicals under identical conditions. The toxic susceptibility of human lung epithelioid HPL1A cells to AM, DEA, and DDIA showed time- and concentration-dependence. DEA had a more rapid and potent toxic effect (LC(50)=8 microM) than AM (LC(50)=146 microM), whereas DDIA cytotoxicity was intermediate (LC(50)=26 microM) suggesting a minor contribution of the iodine atoms. Incubation of human lung epithelial cells with the spin-trapping nitrones alpha-phenyl-N-t-butylnitrone (PBN, 10 mM) or alpha-(4-pyridyl N-oxide)-N-t-butylnitrone (POBN, 5.0 mM) did not significantly protect against AM, DEA, or DDIA cytotoxicity. Intratracheal administration of AM to hamsters produced pulmonary fibrosis at day 21, which was not prevented by 4 days of treatment with 150 mg/kg/day PBN or 164 mg/kg/day POBN. However, the body weight loss in AM-treated animals was counteracted by PBN. These results suggest that, although AM can generate an aryl radical photochemically, its in vivo formation may not be a major contributor to AM toxicity, and that spin-trapping reagents do not halt the onset of AM toxicity.


Subject(s)
Amiodarone/toxicity , Anti-Arrhythmia Agents/toxicity , Cyclic N-Oxides/pharmacology , Lung/drug effects , Pyridines/pharmacology , Animals , Cricetinae , Electron Spin Resonance Spectroscopy , Free Radicals , Hydroxyproline/analysis , Lung/chemistry , Lung/pathology , Male , Mesocricetus , Photochemistry
11.
Cancer Lett ; 241(2): 174-83, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-16458422

ABSTRACT

Aflatoxin B(1) (AFB(1))-N(7)-guanine is the predominant adduct formed upon the reaction of AFB(1)-8,9-exo-epoxide with guanine residues in DNA. AFB(1)-N(7)-guanine can convert to the ring-opened formamidopyrimidine, or the adducted strand can undergo depurination. AFB(1)-N(7)-guanine and AFB(1)-formamidopyrimidine are thought to be predominantly repaired by nucleotide excision repair in bacteria, yeast and mammals. Although AFB(1)-formamidopyrimidine is removed less efficiently than AFB(1)-N(7)-guanine in mammals, both lesions are repaired with equal efficiencies in bacteria, reflecting differences in damage recognition between bacterial and mammalian repair systems. Furthermore, DNA repair activity and modulation of repair by AFB(1) seem to be major determinants of susceptibility to AFB(1)-induced carcinogenesis.


Subject(s)
Aflatoxin B1/pharmacology , DNA Damage/drug effects , DNA Repair , Animals , Humans
12.
Cancer Res ; 65(4): 1265-70, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15735011

ABSTRACT

To investigate the mechanisms responsible for species- and tissue-specific differences in susceptibility to aflatoxin B(1) (AFB(1))-induced carcinogenesis, DNA repair activities of nuclear extracts from whole mouse lung and liver and rat liver were compared, and the ability of in vivo treatment of mice with AFB(1) to alter repair of AFB(1)-DNA damage was determined. Plasmid DNA containing AFB(1)-N(7)-guanine or AFB(1)-formamidopyrimidine adducts were used as substrates for the in vitro determination of DNA repair synthesis activity, detected as incorporation of radiolabeled nucleotides. Liver extracts from CD-1 mice repaired AFB(1)-N(7)-guanine and AFB(1)-formamidopyrimidine adducts 5- and 30-fold more effectively than did mouse lung, and approximately 6- and 4-fold more effectively than did liver extracts from Sprague-Dawley rats. The susceptibility of mouse lung and rat liver to AFB(1)-induced carcinogenesis correlated with lower DNA repair activity of these tissues relative to mouse liver. Lung extracts prepared from mice treated with a single tumorigenic dose of 50 mg/kg AFB(1) i.p. and euthanized 2 hours post-dosing showed minimal incision and repair synthesis activities relative to extracts from vehicle-treated mice. Conversely, repair activity towards AFB(1)-N(7)-guanine damage was approximately 3.5-fold higher in liver of AFB(1)-treated mice relative to control. This is the first study to show that in vivo treatment with AFB(1) can lead to a tissue-specific induction in DNA repair. The results suggest that lower DNA repair activity, sensitivity of mouse lung to inhibition by AFB(1), and selective induction of repair in liver contribute to the susceptibility of mice to AFB(1)-induced lung tumorigenesis relative to hepatocarcinogenesis.


Subject(s)
Aflatoxin B1/analogs & derivatives , Aflatoxin B1/toxicity , Cocarcinogenesis , DNA Repair/physiology , Guanine/analogs & derivatives , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Aflatoxin B1/metabolism , Animals , Carcinogens/toxicity , DNA/drug effects , DNA/metabolism , Female , Genetic Predisposition to Disease , Guanine/metabolism , Liver/drug effects , Liver/metabolism , Liver/physiology , Liver Neoplasms/metabolism , Lung/drug effects , Lung/metabolism , Lung/physiology , Lung Neoplasms/metabolism , Male , Mice , Pyrimidines/metabolism , Rats , Rats, Sprague-Dawley , Species Specificity
13.
Drug Metab Dispos ; 31(9): 1134-41, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12920169

ABSTRACT

The contributions of different enzymes to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) biotransformation were assessed in human lung microsomes prepared from peripheral lung specimens obtained from seven subjects. Metabolite formation was expressed as a percentage of total recovered radioactivity from [5-3H]NNK and its metabolites per milligram of protein per minute. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol was the major metabolite formed in the presence of an NADPH-generating system, with production ranging from 0.5186 to 1.268%/mg of protein/min, and total NNK bioactivation (represented by the sum of the four alpha-carbon hydroxylation endpoint metabolites) ranged from 0.002100 to 0.005685% alpha-hydroxylation/mg of protein/min. Overall, production of bioactivation metabolites was greater than that of detoxication (i.e., N-oxidation) products. Based on total bioactivation, subjects could be classified as high or low NNK bioactivators. In the presence of an NADPH-generating system, microsomal formation of the endpoint metabolite 1-(3-pyridyl)-1-butanone-4-carboxylic acid (keto acid) was consistently higher than that of all other alpha-carbon hydroxylation endpoint metabolites. Contributions of cytochrome p450 (p450) enzymes to NNK oxidation were demonstrated by NADPH dependence, inhibition by carbon monoxide, and inhibition by the nonselective p450 inhibitors proadifen hydrochloride (SKF-525A) and 1-aminobenzotriazole (ABT), particularly in lung microsomes from high bioactivators. At 5.0 mM, ABT inhibited total NNK bioactivation by 54 to 100%, demonstrating the importance of ABT-sensitive enzyme(s) in human pulmonary NNK bioactivation. Contributions of CYP2A6 and/or CYP2A13, as well as CYP2B6, to NNK bioactivation were also suggested by selective chemical and antibody inhibition in lung microsomes from some subjects. It is likely that multiple p450 enzymes contribute to human pulmonary microsomal NNK bioactivation, and that these contributions vary between individuals.


Subject(s)
Carcinogens/metabolism , Lung/metabolism , Microsomes/enzymology , Nitrosamines/metabolism , Aged , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/metabolism , Enzyme Inhibitors/pharmacology , Female , Humans , In Vitro Techniques , Lung/enzymology , Male , Middle Aged , Smoking/metabolism
14.
Chem Res Toxicol ; 15(10): 1267-73, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12387624

ABSTRACT

4-Methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) is a potent tobacco-specific carcinogen believed to play a role in human lung cancer. Bioactivation of NNK involves alpha-carbon hydroxylation that could be catalyzed by cytochrome P450, hemoglobin, and lipoxygenases (LOX). In the present study, the role of LOX in NNK bioactivation was investigated. Formation of keto acid, the endpoint metabolite of alpha-methylene NNK hydroxylation, was observed in human lung cytosols incubated with 4.2 microM [5-(3)H]NNK (N = 6). Following concanavalin A affinity chromatography to enrich human lung lipoxygenase (HLLO), the fraction containing cytosolic components less LOX (fraction 1) retained the ability to bioactivate NNK. Although enriched HLLO exhibited the characteristic dioxygenase and hydroperoxidase activities, it did not bioactivate NNK. The LOX inhibitor nordihydroguaiaretic acid inhibited dioxygenase activity of HLLO by 83 +/- 19% (P < 0.05, N = 6), but did not inhibit keto acid formation in the crude cytosols (N = 6, P > 0.05). Failure of soybean LOX to catalyze NNK bioactivation supported the results observed in human lung cytosols, and failure of chemically generated alkylperoxyl radicals to bioactivate NNK further suggested that the dioxygenase activity of LOX is not likely to be involved in NNK bioactivation. Horseradish peroxidase and myeloperoxidase catalyzed NNK bioactivation were also nondetectable. Our results demonstrate that, although human lung cytosols can bioactivate NNK to form keto acid, LOX is not involved. We have attributed the ability of crude human lung cytosols to bioactivate NNK to hemoglobin. The inhibitory effect of 1-aminobenzotriazole and arachidonic acid on keto acid formation in the crude cytosols and in fraction 1, respectively (P < 0.05, N = 6), is consistent with hemoglobin-catalyzed NNK bioactivation.


Subject(s)
Carcinogens/metabolism , Lipoxygenase/pharmacology , Lung Neoplasms/physiopathology , Nitrosamines/metabolism , Aged , Biotransformation , Carcinogens/pharmacokinetics , Cytosol/chemistry , Female , Hemoglobins/chemistry , Humans , Hydroxylation , Lung/enzymology , Male , Middle Aged , Nitrosamines/pharmacokinetics , Smoking/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL