Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet A ; 188(12): 3492-3504, 2022 12.
Article in English | MEDLINE | ID: mdl-36135330

ABSTRACT

Esophageal atresia/tracheoesophageal fistula (EA/TEF) is a life-threatening birth defect that often occurs with other major birth defects (EA/TEF+). Despite advances in genetic testing, a molecular diagnosis can only be made in a minority of EA/TEF+ cases. Here, we analyzed clinical exome sequencing data and data from the DECIPHER database to determine the efficacy of exome sequencing in cases of EA/TEF+ and to identify phenotypic expansions involving EA/TEF. Among 67 individuals with EA/TEF+ referred for clinical exome sequencing, a definitive or probable diagnosis was made in 11 cases for an efficacy rate of 16% (11/67). This efficacy rate is significantly lower than that reported for other major birth defects, suggesting that polygenic, multifactorial, epigenetic, and/or environmental factors may play a particularly important role in EA/TEF pathogenesis. Our cohort included individuals with pathogenic or likely pathogenic variants that affect TCF4 and its downstream target NRXN1, and FANCA, FANCB, and FANCC, which are associated with Fanconi anemia. These cases, previously published case reports, and comparisons to other EA/TEF genes made using a machine learning algorithm, provide evidence in support of a potential pathogenic role for these genes in the development of EA/TEF.


Subject(s)
Esophageal Atresia , Tracheoesophageal Fistula , Humans , Tracheoesophageal Fistula/diagnosis , Tracheoesophageal Fistula/genetics , Tracheoesophageal Fistula/complications , Esophageal Atresia/diagnosis , Esophageal Atresia/genetics , Esophageal Atresia/complications , Exome/genetics , Exome Sequencing
2.
J Med Genet ; 54(7): 502-510, 2017 07.
Article in English | MEDLINE | ID: mdl-28270404

ABSTRACT

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) represent a significant healthcare burden since it is the primary cause of chronic kidney in children. CNVs represent a recurrent molecular cause of CAKUT but the culprit gene remains often elusive. Our study aimed to define the gene responsible for CAKUT in patients with an 1q23.3q24.1 microdeletion. METHODS: We describe eight patients presenting with CAKUT carrying an 1q23.3q24.1 microdeletion as identified by chromosomal microarray analysis (CMA). Clinical features were collected, especially the renal and urinary tract phenotype, and extrarenal features. We characterised PBX1 expression and localisation in fetal and adult kidneys using quantitative RT-PCR and immunohistochemistry. RESULTS: We defined a 276-kb minimal common region (MCR) that only overlaps with the PBX1 gene. All eight patients presented with syndromic CAKUT. CAKUT were mostly bilateral renal hypoplasia (75%). The most frequent extrarenal symptoms were developmental delay and ear malformations. We demonstrate that PBX1 is strongly expressed in fetal kidneys and brain and expression levels decreased in adult samples. In control fetal kidneys, PBX1 was localised in nuclei of medullary, interstitial and mesenchymal cells, whereas it was present in endothelial cells in adult kidneys. CONCLUSIONS: Our results indicate that PBX1 haploinsufficiency leads to syndromic CAKUT as supported by the Pbx1-null mice model. Correct PBX1 dosage appears to be critical for normal nephrogenesis and seems important for brain development in humans. CMA should be recommended in cases of fetal renal anomalies to improve genetic counselling and pregnancy management.


Subject(s)
Haploinsufficiency/genetics , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux/genetics , Child , Child, Preschool , Female , Fetus/metabolism , Genome, Human , Humans , Infant , Kidney/abnormalities , Kidney/embryology , Kidney/metabolism , Kidney/pathology , Male , Syndrome
3.
J Hum Genet ; 59(9): 484-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25007883

ABSTRACT

Parathyroid hormone-like hormone (PTHLH, MIM 168470) is a humoral factor, structurally and functionally related to parathyroid hormone, which mediates multiple effects on chondrocyte, osteoblast and osteoclast function. Mutations and copy number imbalances of the PTHLH locus and in the gene encoding its receptor, PTHR1, result in a variety of skeletal dysplasias including brachydactyly type E, Eiken syndrome, Jansen metaphyseal chondrodysplasia and Blomstrand type chondrodysplasia. Here we describe three individuals with duplications of the PTHLH locus, including two who are mosaic for these imbalances, leading to a hitherto unrecognized syndrome characterized by acro-osteolysis, cortical irregularity of long bones and metadiaphyseal enchondromata.


Subject(s)
Acro-Osteolysis/genetics , DNA Copy Number Variations , Gene Duplication , Mutation , Parathyroid Hormone-Related Protein/genetics , Acro-Osteolysis/pathology , Comparative Genomic Hybridization , Family Health , Female , Hajdu-Cheney Syndrome/genetics , Hajdu-Cheney Syndrome/pathology , Humans , Male , Pedigree , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...