Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 716: 149954, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704887

ABSTRACT

Membrane lipids and proteins form dynamic domains crucial for physiological and pathophysiological processes, including viral infection. Many plasma membrane proteins, residing within membrane domains enriched with cholesterol (CHOL) and sphingomyelin (SM), serve as receptors for attachment and entry of viruses into the host cell. Among these, human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use proteins associated with membrane domains for initial binding and internalization. We hypothesized that the interaction of lipid-binding proteins with CHOL in plasma membrane could sequestrate lipids and thus affect the efficiency of virus entry into host cells, preventing the initial steps of viral infection. We have prepared CHOL-binding proteins with high affinities for lipids in the plasma membrane of mammalian cells. Binding of the perfringolysin O domain four (D4) and its variant D4E458L to membrane CHOL impaired the internalization of the receptor-binding domain of the SARS-CoV-2 spike protein and the pseudovirus complemented with the SARS-CoV-2 spike protein. SARS-CoV-2 replication in Vero E6 cells was also decreased. Overall, our results demonstrate that the integrity of CHOL-rich membrane domains and the accessibility of CHOL in the membrane play an essential role in SARS-CoV-2 cell entry.


Subject(s)
Cell Membrane , Cholesterol , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization , Vero Cells , Chlorocebus aethiops , Cholesterol/metabolism , Animals , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Cell Membrane/metabolism , Cell Membrane/virology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Humans , Carrier Proteins/metabolism , COVID-19/virology , COVID-19/metabolism , Protein Binding
2.
Int J Nanomedicine ; 19: 1709-1721, 2024.
Article in English | MEDLINE | ID: mdl-38410418

ABSTRACT

Introduction: Lipid nanovesicles associated with bioactive phytochemicals from spruce needle homogenate (here called nano-sized hybridosomes or nanohybridosomes, NSHs) were considered. Methods: We formed NSHs by mixing appropriate amounts of lecithin, glycerol and supernatant of isolation of extracellular vesicles from spruce needle homogenate. We visualized NSHs by light microscopy and cryogenic transmission electron microscopy and assessed them by flow cytometry, dynamic light scattering, ultraviolet-visual spectroscopy, interferometric light microscopy and liquid chromatography-mass spectrometry. Results: We found that the particles consisted of a bilayer membrane and a fluid-like interior. Flow cytometry and interferometric light microscopy measurements showed that the majority of the particles were nano-sized. Dynamic light scattering and interferometric light microscopy measurements agreed well on the average hydrodynamic radius of the particles Rh (between 140 and 180 nm), while the concentrations of the particles were in the range between 1013 and 1014/mL indicating that NSHs present a considerable (more than 25%) of the sample which is much more than the yield of natural extracellular vesicles (EVs) from spruce needle homogenate (estimated less than 1%). Spruce specific lipids and proteins were found in hybridosomes. Discussion: Simple and low-cost preparation method, non-demanding saving process and efficient formation procedure suggest that large-scale production of NSHs from lipids and spruce needle homogenate is feasible.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/metabolism , Microscopy, Electron, Transmission , Dynamic Light Scattering , Proteins/metabolism , Lecithins
3.
Int J Mol Sci ; 24(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36901780

ABSTRACT

Small cellular particles (SCPs) are being considered for their role in cell-to-cell communication. We harvested and characterized SCPs from spruce needle homogenate. SCPs were isolated by differential ultracentrifugation. They were imaged by scanning electron microscope (SEM) and cryogenic transmission electron microscope (cryo TEM), assessed for their number density and hydrodynamic diameter by interferometric light microscopy (ILM) and flow cytometry (FCM), total phenolic content (TPC) by UV-vis spectroscopy, and terpene content by gas chromatography-mass spectrometry (GC-MS). The supernatant after ultracentrifugation at 50,000× g contained bilayer-enclosed vesicles whereas in the isolate we observed small particles of other types and only a few vesicles. The number density of cell-sized particles (CSPs) (larger than 2 µm) and meso-sized particles (MSPs) (cca 400 nm-2 µm) was about four orders of magnitude lower than the number density of SCPs (sized below 500 nm). The average hydrodynamic diameter of SCPs measured in 10,029 SCPs was 161 ± 133 nm. TCP decreased considerably due to 5-day aging. Volatile terpenoid content was found in the pellet after 300× g. The above results indicate that spruce needle homogenate is a source of vesicles to be explored for potential delivery use.


Subject(s)
Picea , Terpenes/analysis , Microscopy , Flow Cytometry , Gas Chromatography-Mass Spectrometry
4.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834843

ABSTRACT

The preparation of autologous platelet and extracellular vesicle-rich plasma (PVRP) has been explored in many medical fields with the aim to benefit from its healing potential. In parallel, efforts are being invested to understand the function and dynamics of PVRP that is complex in its composition and interactions. Some clinical evidence reveals beneficial effects of PVRP, while some report that there were no effects. To optimize the preparation methods, functions and mechanisms of PVRP, its constituents should be better understood. With the intention to promote further studies of autologous therapeutic PVRP, we performed a review on some topics regarding PVRP composition, harvesting, assessment and preservation, and also on clinical experience following PVRP application in humans and animals. Besides the acknowledged actions of platelets, leukocytes and different molecules, we focus on extracellular vesicles that were found abundant in PVRP.


Subject(s)
Platelet-Rich Plasma , Humans , Animals , Blood Platelets , Wound Healing , Leukocytes
5.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555442

ABSTRACT

Small particles in natural sources are a subject of interest for their potential role in intercellular, inter-organism, and inter-species interactions, but their harvesting and assessment present a challenge due to their small size and transient identity. We applied a recently developed interferometric light microscopy (ILM) to assess the number density and hydrodynamic radius (Rh) of isolated small cellular particles (SCPs) from blood preparations (plasma and washed erythrocytes) (B), spruce needle homogenate (S), suspension of flagellae of microalgae Tetraselmis chuii (T), conditioned culture media of microalgae Phaeodactylum tricornutum (P), and liposomes (L). The aliquots were also assessed by flow cytometry (FCM), dynamic light scattering (DLS), ultraviolet-visible spectrometry (UV-vis), and imaging by cryogenic transmission electron microscopy (cryo-TEM). In Rh, ILM showed agreement with DLS within the measurement error in 10 out of 13 samples and was the only method used here that yielded particle density. Cryo-TEM revealed that representative SCPs from Tetraselmis chuii flagella (T) did not have a globular shape, so the interpretation by Rh of the batch methods was biased. Cryo-TEM showed the presence of thin filaments in isolates from Phaeodactylum tricornutum conditioned culture media (P), which provides an explanation for the considerably larger Rh obtained by batch methods than the sizes of particles observed by cryo-TEM images. ILM proved convenient for assessment of number density and Rh of SCPs in blood preparations (e.g., plasma); therefore, its use in population and clinical studies is indicated.


Subject(s)
Liposomes , Liposomes/chemistry , Culture Media, Conditioned , Microscopy, Electron, Transmission , Cryoelectron Microscopy , Dynamic Light Scattering , Particle Size
6.
Cancers (Basel) ; 14(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35954365

ABSTRACT

Tumor growth and metastasis strongly rely on cell-cell communication. One of the mechanisms by which tumor cells communicate involves the release and uptake of lipid membrane encapsulated particles full of bioactive molecules, called extracellular vesicles (EVs). EV exchange between cancer cells may induce phenotype changes in the recipient cells. Our work investigated the effect of EVs released by teratocarcinoma cells on glioblastoma (GBM) cells. EVs were isolated by differential centrifugation and analyzed through Western blot, nanoparticle tracking analysis, and electron microscopy. The effect of large EVs on GBM cells was tested through cell migration, proliferation, and drug-sensitivity assays, and resulted in a specific impairment in cell migration with no effects on proliferation and drug-sensitivity. Noticeably, we found the presence of the EGF-CFC founder member CRIPTO on both small and large EVs, in the latter case implicated in the EV-mediated negative regulation of GBM cell migration. Our data let us propose a novel route and function for CRIPTO during tumorigenesis, highlighting a complex scenario regulating its effect, and paving the way to novel strategies to control cell migration, to ultimately improve the prognosis and quality of life of GBM patients.

7.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955586

ABSTRACT

We studied the efficiency of three culture series of the microalgae Phaeodactylum tricornutum (P. tricornutum) and bacteria Thalassospira sp. (axenic microalgae, bacterial culture and co-culture of the two) in removing bisphenols (BPs) from their growth medium. Bacteria were identified by 16S ribosomal RNA polymerase chain reaction (16S rRNA PCR). The microorganism growth rate was determined by flow cytometry. Cultures and isolates of their small cellular particles (SCPs) were imaged by scanning electron microscopy (SEM) and cryogenic transmission electron microscopy (Cryo-TEM). BPs were analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). Our results indicate that some organisms may have the ability to remove a specific pollutant with high efficiency. P. tricornutum in axenic culture and in mixed culture removed almost all (more than 99%) of BPC2. Notable differences in the removal of 8 out of 18 BPs between the axenic, mixed and bacterial cultures were found. The overall removals of BPs in axenic P. tricornutum, mixed and bacterial cultures were 11%, 18% and 10%, respectively. Finding the respective organisms and creating microbe societies seems to be key for the improvement of wastewater treatment. As a possible mediating factor, numerous small cellular particles from all three cultures were detected by electron microscopy. Further research on the mechanisms of interspecies communication is needed to advance the understanding of microbial communities at the nano-level.


Subject(s)
Diatoms , Microalgae , Rhodospirillaceae , Bacteria/genetics , Culture Media, Conditioned , Diatoms/genetics , Gas Chromatography-Mass Spectrometry , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry
8.
Int J Mol Sci ; 22(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34884574

ABSTRACT

Extracellular vesicles (EVs) are gaining increasing amounts of attention due to their potential use in diagnostics and therapy, but the poor reproducibility of the studies that have been conducted on these structures hinders their breakthrough into routine practice. We believe that a better understanding of EVs stability and methods to control their integrity are the key to resolving this issue. In this work, erythrocyte EVs (hbEVs) were isolated by centrifugation from suspensions of human erythrocytes that had been aged in vitro. The isolate was characterised by scanning (SEM) and cryo-transmission electron microscopy (cryo-TEM), flow cytometry (FCM), dynamic/static light scattering (LS), protein electrophoresis, and UV-V spectrometry. The hbEVs were exposed to various conditions (pH (4-10), osmolarity (50-1000 mOsm/L), temperature (15-60 °C), and surfactant Triton X-100 (10-500 µM)). Their stability was evaluated by LS by considering the hydrodynamic radius (Rh), intensity of scattered light (I), and the shape parameter (ρ). The morphology of the hbEVs that had been stored in phosphate-buffered saline with citrate (PBS-citrate) at 4 °C remained consistent for more than 6 months. A change in the media properties (50-1000 mOsm/L, pH 4-10) had no significant effect on the Rh (=100-130 nm). At pH values below 6 and above 8, at temperatures above 45 °C, and in the presence of Triton X-100, hbEVs degradation was indicated by a decrease in I of more than 20%. Due to the simple preparation, homogeneous morphology, and stability of hbEVs under a wide range of conditions, they are considered to be a suitable option for EV reference material.


Subject(s)
Dynamic Light Scattering/methods , Erythrocytes/metabolism , Extracellular Vesicles/metabolism , Microscopy, Electron/methods , Erythrocytes/ultrastructure , Extracellular Vesicles/ultrastructure , Humans
9.
Int J Mol Sci ; 22(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805017

ABSTRACT

Identification of novel agents for bladder cancer treatment is highly desirable due to the high incidence of tumor recurrence and the risk of progression to muscle-invasive disease. The key feature of the cholesterol-dependent toxin listeriolysin O mutant (LLO Y406A) is its preferential activity at pH 5.7, which could be exploited either directly for selective targeting of cancer cells or the release of accumulated therapeutics from acidic endosomes. Therefore, our goal was to compare the cytotoxic effect of LLO Y406A on cancer cells (RT4) and normal urothelial cells (NPU), and to identify which cell membranes are the primary target of LLO Y406A by viability assays, life-cell imaging, fluorescence, and electron microscopy. LLO Y406A decreased viability, altered cell morphology, provoked membrane blebbing, and induced apoptosis in RT4 cells, while it did not affect NPU cells. LLO Y406A did not cause endosomal escape in RT4 cells, while the plasma membrane of RT4 cells was revealed as the primary target of LLO Y406A. It has been concluded that LLO Y406A has the ability to selectively eliminate cancer urothelial cells through pore-forming activity at the plasma membrane, without cytotoxic effects on normal urothelial cells. This promising selective activity merits further testing as an anti-cancer agent.


Subject(s)
Antineoplastic Agents/toxicity , Bacterial Toxins/toxicity , Cell Membrane/drug effects , Heat-Shock Proteins/toxicity , Hemolysin Proteins/toxicity , Urinary Bladder Neoplasms/metabolism , Urothelium/drug effects , Animals , Bacterial Toxins/genetics , Calcium/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Cells, Cultured , Endosomes/drug effects , Endosomes/metabolism , Heat-Shock Proteins/genetics , Hemolysin Proteins/genetics , Humans , Mutation , Swine , Urothelium/metabolism
10.
Int J Nanomedicine ; 16: 443-456, 2021.
Article in English | MEDLINE | ID: mdl-33505159

ABSTRACT

INTRODUCTION: Cellular nanovesicles (CNVs), that are shed from cells, have been recognized as promising indicators of health status. We analyzed the effect of long-distance running on concentration of CNVs, along with some standard blood parameters, in 27 athletes two days before and >15 hours after physical effort. METHODS: CNVs were isolated by repetitive centrifugation and washing of samples, and assessed by flow cytometry. Cholinesterase (ChE) and glutathione S-transferase (GST) activity were measured spectrophotometrically. Interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) concentrations were measured using enzyme-linked immunosorbent assay (ELISA). C-reactive protein (CRP) was measured with immunoturbidimetric determination and lipidogram parameters were measured by enzymatic colorimetric assay. Flow cytometry was used for blood cell count and mean platelet volume (MPV) measurement. RESULTS: More than 15 hours after physical effort a decrease was found in CNVs' concentration in isolates from blood (46%; p<0.05), in ChE activity in whole blood (47%; p<0.001), in plasma (34%; p<0.01), and in erythrocyte suspension (54%; p<0.001), as well as in GST activity in erythrocyte suspension (16%; p<0.01) and in IL-6 concentration in plasma (63%; p<0.05). We found no change in GST activity in plasma and in TNF-α concentration in plasma. Correlations (>0.8; p<0.001) between CNVs' concentration and ChE activity, and GST activity, respectively, in erythrocyte suspension were found. CONCLUSION: We found that >15 hours post-physical effort, CNVs' concentration was below the initial value, concomitant with other measured parameters: ChE and GST activity as well as IL-6 concentration, indicating a favorable effect of physical effort on health status. CNVs' concentration and ChE activity in isolates from peripheral blood proved to have potential as indicators of the response of the human body to inflammation after physical effort. Physical activity should be considered as an important factor in preparation of subjects for blood sampling in procedures focusing on CNV-containing diagnostic and therapeutic compounds.


Subject(s)
Athletes , Blood/metabolism , Marathon Running , Nanoparticles/chemistry , Adult , Blood Cell Count , C-Reactive Protein/analysis , Erythrocytes/metabolism , Female , Flow Cytometry , Humans , Interleukin-6/blood , Lipids/chemistry , Male , Middle Aged , Physical Exertion/physiology , Tumor Necrosis Factor-alpha/blood , Young Adult
11.
J Extracell Vesicles ; 7(1): 1535750, 2018.
Article in English | MEDLINE | ID: mdl-30637094

ABSTRACT

The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.

12.
Eur J Pharm Sci ; 98: 17-29, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27737793

ABSTRACT

During harvesting of nanovesicles (NVs) from blood, blood cells and other particles in blood are exposed to mechanical forces which may cause activation of platelets, changes of membrane properties, cell deformation and shedding of membrane fragments. We report on the effect of shear forces imposed upon blood samples during the harvesting process, on the concentration of membrane nanovesicles in isolates from blood. Mathematical models of blood flow through the needle during sampling with vacuumtubes and with free flow were constructed, starting from the Navier-Stokes formalism. Blood was modeled as a Newtonian fluid. Work of the shear stress was calculated. In experiments, nanovesicles were isolated by repeated centrifugation (up to 17,570×g) and washing, and counted by flow cytometry. It was found that the concentration of nanovesicles in the isolates positively corresponded with the work by the shear forces in the flow of the sample through the needle. We have enhanced the effect of the shear forces by shaking the samples prior to isolation with glass beads. Imaging of isolates by scanning electron microscopy revealed closed globular structures of a similar size and shape as those obtained from unshaken plasma by repetitive centrifugation and washing. Furthermore, the sizes and shapes of NVs obtained by shaking erythrocytes corresponded to those isolated from shaken platelet-rich plasma and from unshaken platelet rich plasma, and not to those induced in erythrocytes by exogenously added amphiphiles. These results are in favor of the hypothesis that a significant pool of nanovesicles in blood isolates is created during their harvesting. The identity, shape, size and composition of NVs in isolates strongly depend on the technology of their harvesting.


Subject(s)
Erythrocytes/cytology , Extracellular Vesicles , Nanostructures , Needles , Platelet-Rich Plasma/cytology , Adult , Extracellular Vesicles/ultrastructure , Female , Flow Cytometry , Humans , Male , Microscopy, Electron, Scanning , Middle Aged , Nanostructures/ultrastructure , Stress, Mechanical , Young Adult
13.
Biochim Biophys Acta ; 1858(11): 2882-2893, 2016 11.
Article in English | MEDLINE | ID: mdl-27591807

ABSTRACT

Ostreolysin A (OlyA) is a 15-kDa protein that binds selectively to cholesterol/sphingomyelin membrane nanodomains. This binding induces the production of extracellular vesicles (EVs) that comprise both microvesicles with diameters between 100nm and 1µm, and larger vesicles of around 10-µm diameter in Madin-Darby canine kidney cells. In this study, we show that vesiculation of these cells by the fluorescent fusion protein OlyA-mCherry is not affected by temperature, is not mediated via intracellular Ca2+ signalling, and does not compromise cell viability and ultrastructure. Seventy-one proteins that are mostly of cytosolic and nuclear origin were detected in these shed EVs using mass spectroscopy. In the cells and EVs, 218 and 84 lipid species were identified, respectively, and the EVs were significantly enriched in lysophosphatidylcholines and cholesterol. Our collected data suggest that OlyA-mCherry binding to cholesterol/sphingomyelin membrane nanodomains induces specific lipid sorting into discrete patches, which promotes plasmalemmal blebbing and EV shedding from the cells. We hypothesize that these effects are accounted for by changes of local membrane curvature upon the OlyA-mCherry-plasmalemma interaction. We suggest that the shed EVs are a potentially interesting model for biophysical and biochemical studies of cell membranes, and larger vesicles could represent tools for non-invasive sampling of cytosolic proteins from cells and thus metabolic fingerprinting.


Subject(s)
Carrier Proteins/pharmacology , Cell Membrane/drug effects , Cell-Derived Microparticles/chemistry , Hemolysin Proteins/pharmacology , Luminescent Proteins/pharmacology , Pancreatic Elastase/pharmacology , Recombinant Fusion Proteins/pharmacology , Animals , Calcium/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Membrane/chemistry , Cell Survival/drug effects , Cell-Derived Microparticles/drug effects , Cholesterol/chemistry , Cholesterol/isolation & purification , Dogs , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/pharmacology , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Ion Transport , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Lysophosphatidylcholines/chemistry , Lysophosphatidylcholines/isolation & purification , Madin Darby Canine Kidney Cells , Metabolomics , Pancreatic Elastase/genetics , Pancreatic Elastase/metabolism , Protein Binding , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sphingomyelins/chemistry , Sphingomyelins/isolation & purification , Red Fluorescent Protein
14.
Acta Chim Slov ; 63(3): 424-39, 2016.
Article in English | MEDLINE | ID: mdl-27640371

ABSTRACT

Physical and functional interactions between molecules in living systems are central to all biological processes. Identification of protein complexes therefore is becoming increasingly important to gain a molecular understanding of cells and organisms. Several powerful methodologies and techniques have been developed to study molecular interactions and thus help elucidate their nature and role in biology as well as potential ways how to interfere with them. All different techniques used in these studies have their strengths and weaknesses and since they are mostly employed in in vitro conditions, a single approach can hardly accurately reproduce interactions that happen under physiological conditions. However, complementary usage of as many as possible available techniques can lead to relatively realistic picture of the biological process. Here we describe several proteomic, biophysical and structural tools that help us understand the nature and mechanism of these interactions.


Subject(s)
Proteins/metabolism , Biophysical Phenomena , Calorimetry , Chromatography, Affinity , Cryoelectron Microscopy , Crystallography, X-Ray , Fluorescence Resonance Energy Transfer , Lipid Bilayers , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Proteomics , Quartz Crystal Microbalance Techniques , Surface Plasmon Resonance , Two-Hybrid System Techniques
15.
J Membr Biol ; 249(5): 703-711, 2016 10.
Article in English | MEDLINE | ID: mdl-27371159

ABSTRACT

Bystander effect, a known phenomenon in radiation biology, where irradiated cells release signals which cause damage to nearby, unirradiated cells, has not been explored in electroporated cells yet. Therefore, our aim was to determine whether bystander effect is present in electroporated melanoma cells in vitro, by determining viability of non-electroporated cells exposed to medium from electroporated cells and by the release of microvesicles as potential indicators of the bystander effect. Here, we demonstrated that electroporation of cells induces bystander effect: Cells exposed to electric pulses mediated their damage to the non-electroporated cells, thus decreasing cell viability. We have shown that shedding microvesicles may be one of the ways used by the cells to mediate the death signals to the neighboring cells. The murine melanoma B16F1 cell line was found to be more electrosensitive and thus more prone to bystander effect than the canine melanoma CMeC-1 cell line. In B16F1 cell line, bystander effect was present above the level of electropermeabilization of the cells, with the threshold at 800 V/cm. Furthermore, with increasing electric field intensities and the number of pulses, the bystander effect also increased. In conclusion, electroporation can induce bystander effect which may be mediated by microvesicles, and depends on pulse amplitude, repetition frequency and cell type.


Subject(s)
Bystander Effect , Electroporation , Animals , Cell Line, Tumor , Cell Membrane Permeability/radiation effects , Cell Survival/radiation effects , Cell-Derived Microparticles/metabolism , Dogs , Electroporation/methods , Melanoma, Experimental , Mice , Radiation, Ionizing
16.
PLoS Pathog ; 12(4): e1005597, 2016 04.
Article in English | MEDLINE | ID: mdl-27104344

ABSTRACT

Listeriolysin-O (LLO) plays a crucial role during infection by Listeria monocytogenes. It enables escape of bacteria from phagocytic vacuole, which is the basis for its spread to other cells and tissues. It is not clear how LLO acts at phagosomal membranes to allow bacterial escape. The mechanism of action of LLO remains poorly understood, probably due to unavailability of suitable experimental tools that could monitor LLO membrane disruptive activity in real time. Here, we used high-speed atomic force microscopy (HS-AFM) featuring high spatio-temporal resolution on model membranes and optical microscopy on giant unilamellar vesicles (GUVs) to investigate LLO activity. We analyze the assembly kinetics of toxin oligomers, the prepore-to-pore transition dynamics and the membrane disruption in real time. We reveal that LLO toxin efficiency and mode of action as a membrane-disrupting agent varies strongly depending on the membrane cholesterol concentration and the environmental pH. We discovered that LLO is able to form arc pores as well as damage lipid membranes as a lineactant, and this leads to large-scale membrane defects. These results altogether provide a mechanistic basis of how large-scale membrane disruption leads to release of Listeria from the phagocytic vacuole in the cellular context.


Subject(s)
Bacterial Toxins/metabolism , Heat-Shock Proteins/metabolism , Hemolysin Proteins/metabolism , Listeria monocytogenes/pathogenicity , Listeriosis/metabolism , Phagosomes/microbiology , Animals , Cell Line , Cholesterol/metabolism , Flow Cytometry , Microscopy, Atomic Force , Microscopy, Confocal
17.
PLoS One ; 9(8): e104553, 2014.
Article in English | MEDLINE | ID: mdl-25111695

ABSTRACT

Mitogen-activated protein kinase (MAPK) cascades have crucial roles in the regulation of plant development and in plant responses to stress. Plant recognition of pathogen-associated molecular patterns or pathogen-derived effector proteins has been shown to trigger activation of several MAPKs. This then controls defence responses, including synthesis and/or signalling of defence hormones and activation of defence related genes. The MAPK cascade genes are highly complex and interconnected, and thus the precise signalling mechanisms in specific plant-pathogen interactions are still not known. Here we investigated the MAPK signalling network involved in immune responses of potato (Solanum tuberosum L.) to Potato virus Y, an important potato pathogen worldwide. Sequence analysis was performed to identify the complete MAPK kinase (MKK) family in potato, and to identify those regulated in the hypersensitive resistance response to Potato virus Y infection. Arabidopsis has 10 MKK family members, of which we identified five in potato and tomato (Solanum lycopersicum L.), and eight in Nicotiana benthamiana. Among these, StMKK6 is the most strongly regulated gene in response to Potato virus Y. The salicylic acid treatment revealed that StMKK6 is regulated by the hormone that is in agreement with the salicylic acid-regulated domains found in the StMKK6 promoter. The involvement of StMKK6 in potato defence response was confirmed by localisation studies, where StMKK6 accumulated strongly only in Potato-virus-Y-infected plants, and predominantly in the cell nucleus. Using a yeast two-hybrid method, we identified three StMKK6 targets downstream in the MAPK cascade: StMAPK4_2, StMAPK6 and StMAPK13. These data together provide further insight into the StMKK6 signalling module and its involvement in plant defence.


Subject(s)
Potyvirus/physiology , Solanum tuberosum/virology , Base Sequence , Gene Expression Profiling , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Molecular Sequence Data , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/virology , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Protein Transport/drug effects , Salicylic Acid/pharmacology , Sequence Homology, Amino Acid , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Solanum tuberosum/physiology , Stress, Physiological/genetics
18.
PLoS One ; 9(6): e99398, 2014.
Article in English | MEDLINE | ID: mdl-24915158

ABSTRACT

Keratin 8 and 18 (K8/K18) mutations have been implicated in the aetiology of certain pathogenic processes of the liver and pancreas. While some K8 mutations (K8 G62C, K8 K464N) are also presumed susceptibility factors for inflammatory bowel disease (IBD), the only K18 mutation (K18 S230T) discovered so far in an IBD patient is thought to be a polymorphism. The aim of our study was to demonstrate that these mutations might also directly affect intestinal cell barrier function. Cell monolayers of genetically engineered human colonocytes expressing these mutations were tested for permeability, growth rate and resistance to heat-stress. We also calculated the change in dissociation constant (Kd, measure of affinity) each of these mutations introduces into the keratin protein, and present the first model of a keratin dimer L12 region with in silico clues to how the K18 S230T mutation may affect keratin function. Physiologically, these mutations cause up to 30% increase in paracellular permeability in vitro. Heat-stress induces little keratin clumping but instead cell monolayers peel off the surface suggesting a problem with cell junctions. K18 S230T has pronounced pathological effects in vitro marked by high Kd, low growth rate and increased permeability. The latter may be due to the altered distribution of tight junction components claudin-4 and ZO-1. This is the first time intestinal cells have been suggested also functionally impaired by K8/K18 mutations. Although an in vitro colonocyte model system does not completely mimic the epithelial lining of the intestine, nevertheless the data suggest that K8/K18 mutations may be also able to produce a phenotype in vivo.


Subject(s)
Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Intestines/pathology , Keratin-18/genetics , Keratin-8/genetics , Mutation/genetics , Blotting, Western , Cell Extracts , Cell Line, Tumor , Cell Membrane Permeability , Cell Proliferation , Claudin-4/metabolism , Heat-Shock Response , Humans , Hydrogen Bonding , Kinetics , Models, Molecular , Protein Multimerization , Protein Structure, Tertiary , Zonula Occludens-1 Protein/metabolism
19.
Subcell Biochem ; 80: 221-39, 2014.
Article in English | MEDLINE | ID: mdl-24798014

ABSTRACT

Natural killer (NK) cells and cytotoxic T lymphocytes (CTL) use a highly toxic pore-forming protein perforin (PFN) to destroy cells infected with intracellular pathogens and cells with pre-cancerous transformations. However, mutations of PFN and defects in its expression can cause an abnormal function of the immune system and difficulties in elimination of altered cells. As discussed in this chapter, deficiency of PFN due to the mutations of its gene, PFN1, can be associated with malignancies and severe immune disorders such as familial hemophagocytic lymphohistiocytosis (FHL) and macrophage activation syndrome. On the other hand, overactivity of PFN can turn the immune system against autologous cells resulting in other diseases such as systemic lupus erythematosus, polymyositis, rheumatoid arthritis and cutaneous inflammation. PFN also has a crucial role in the cellular rejection of solid organ allografts and destruction of pancreatic ß-cells resulting in type 1 diabetes. These facts highlight the importance of understanding the biochemical characteristics of PFN.


Subject(s)
Immune System Diseases/immunology , Perforin/physiology , Animals , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Graft Rejection/genetics , Graft Rejection/immunology , Humans , Immune System Diseases/genetics , Models, Molecular , Perforin/chemistry , Perforin/genetics
20.
Biochem Soc Trans ; 41(1): 303-8, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23356302

ABSTRACT

Clinical studies have indicated that the NV (nanovesicle) concentration in blood samples is a potential indicator of clinical status and can be used to follow the development of the disease. For 32 months, we monitored the effect of imatinib treatment on NV concentrations in blood samples from 12 patients with GIST (gastrointestinal stromal tumour). The NV concentration before the treatment increased with respect to control by a factor of 3.5 on average (range 2.6-9.2). The first week after initiation of the treatment, the NV concentration increased considerably, by a factor of 13 on average (range 5.9-21.2), whereas on average, after 1 month, it decreased to the level of the control and remained at that level for at least 1.5 years. Recent assessment (after 2.5 years) showed a somewhat increased NV concentration, by a factor of 2 on average (range 0.7-3.9). Low NV concentrations in blood samples during the treatment reflect a favourable effect of imatinib in these patients and no remission of the disease was hitherto observed.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzamides/therapeutic use , Gastrointestinal Stromal Tumors/blood , Gastrointestinal Stromal Tumors/drug therapy , Piperazines/therapeutic use , Pyrimidines/therapeutic use , Apoptosis , Follow-Up Studies , Gastrointestinal Stromal Tumors/pathology , Humans , Imatinib Mesylate , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...