Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1307297, 2024.
Article in English | MEDLINE | ID: mdl-38510236

ABSTRACT

Background: Primary sclerosing cholangitis (PSC) is a chronic liver disease marked by inflammation of the bile ducts and results in the development of strictures and fibrosis. A robust clinical correlation exists between PSC and inflammatory bowel disease (IBD). At present, published data are controversial, and it is yet unclear whether IBD drives or attenuates PSC. Methods: Mdr2-deficient mice or DDC-fed mice were used as experimental models for sclerosing cholangitis. Additionally, colitis was induced in mice with experimental sclerosing cholangitis, either through infection with Citrobacter rodentium or by feeding with DSS. Lastly, fibrosis levels were determined through FibroScan analysis in people with PSC and PSC-IBD. Results: Using two distinct experimental models of colitis and two models of sclerosing cholangitis, we found that colitis does not aggravate liver pathology, but rather reduces liver inflammation and liver fibrosis. Likewise, people with PSC-IBD have decreased liver fibrosis compared to those with PSC alone. Conclusions: We found evidence that intestinal inflammation attenuates liver pathology. This study serves as a basis for further research on the pathogenesis of PSC and PSC-IBD, as well as the molecular mechanism responsible for the protective effect of IBD on PSC development. This study could lead to the discovery of novel therapeutic targets for PSC.


Subject(s)
Cholangitis, Sclerosing , Colitis , Inflammatory Bowel Diseases , Humans , Animals , Mice , Cholangitis, Sclerosing/drug therapy , Inflammatory Bowel Diseases/pathology , Inflammation , Liver Cirrhosis/pathology
2.
J Hepatol ; 80(4): 634-644, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38160941

ABSTRACT

BACKGROUND & AIMS: The liver is one of the organs most commonly affected by metastasis. The presence of liver metastases has been reported to be responsible for an immunosuppressive microenvironment and diminished immunotherapy efficacy. Herein, we aimed to investigate the role of IL-10 in liver metastasis and to determine how its modulation could affect the efficacy of immunotherapy in vivo. METHODS: To induce spontaneous or forced liver metastasis in mice, murine cancer cells (MC38) or colon tumor organoids were injected into the cecum or the spleen, respectively. Mice with complete and cell type-specific deletion of IL-10 and IL-10 receptor alpha were used to identify the source and the target of IL-10 during metastasis formation. Programmed death ligand 1 (PD-L1)-deficient mice were used to test the role of this checkpoint. Flow cytometry was applied to characterize the regulation of PD-L1 by IL-10. RESULTS: We found that Il10-deficient mice and mice treated with IL-10 receptor alpha antibodies were protected against liver metastasis formation. Furthermore, by using IL-10 reporter mice, we demonstrated that Foxp3+ regulatory T cells (Tregs) were the major cellular source of IL-10 in liver metastatic sites. Accordingly, deletion of IL-10 in Tregs, but not in myeloid cells, led to reduced liver metastasis. Mechanistically, IL-10 acted on Tregs in an autocrine manner, thereby further amplifying IL-10 production. Furthermore, IL-10 acted on myeloid cells, i.e. monocytes, and induced the upregulation of the immune checkpoint protein PD-L1. Finally, the PD-L1/PD-1 axis attenuated CD8-dependent cytotoxicity against metastatic lesions. CONCLUSIONS: Treg-derived IL-10 upregulates PD-L1 expression in monocytes, which in turn reduces CD8+ T-cell infiltration and related antitumor immunity in the context of colorectal cancer-derived liver metastases. These findings provide the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastases. IMPACT AND IMPLICATIONS: Liver metastasis diminishes the effectiveness of immunotherapy and increases the mortality rate in patients with colorectal cancer. We investigated the role of IL-10 in liver metastasis formation and assessed its impact on the effectiveness of immunotherapy. Our data show that IL-10 is a pro-metastatic factor involved in liver metastasis formation and that it acts as a regulator of PD-L1. This provides the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastasis.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Animals , Humans , Mice , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Interleukin-10 , Liver Neoplasms/pathology , Receptors, Interleukin-10 , Tumor Microenvironment
3.
J Immunol ; 211(11): 1669-1679, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37850963

ABSTRACT

T regulatory type 1 (Tr1) cells, which are defined by their regulatory function, lack of Foxp3, and high expression of IL-10, CD49b, and LAG-3, are known to be able to suppress Th1 and Th17 in the intestine. Th1 and Th17 cells are also the main drivers of crescentic glomerulonephritis (GN), the most severe form of renal autoimmune disease. However, whether Tr1 cells emerge in renal inflammation and, moreover, whether they exhibit regulatory function during GN have not been thoroughly investigated yet. To address these questions, we used a mouse model of experimental crescentic GN and double Foxp3mRFP IL-10eGFP reporter mice. We found that Foxp3neg IL-10-producing CD4+ T cells infiltrate the kidneys during GN progression. Using single-cell RNA sequencing, we could show that these cells express the core transcriptional factors characteristic of Tr1 cells. In line with this, Tr1 cells showed a strong suppressive activity ex vivo and were protective in experimental crescentic GN in vivo. Finally, we could also identify Tr1 cells in the kidneys of patients with antineutrophil cytoplasmic autoantibody-associated GN and define their transcriptional profile. Tr1 cells are currently used in several immune-mediated inflammatory diseases, such as T-cell therapy. Thus, our study provides proof of concept for Tr1 cell-based therapies in experimental GN.


Subject(s)
Glomerulonephritis , T-Lymphocytes, Regulatory , Humans , Mice , Animals , Interleukin-10/metabolism , Th17 Cells , Kidney/metabolism , Transcription Factors/metabolism , Th1 Cells
4.
Inflamm Bowel Dis ; 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37540889

ABSTRACT

BACKGROUND: Primary sclerosing cholangitis (PSC) is a progressive liver disease associated with inflammatory bowel disease (IBD). The percentage of PSC patients diagnosed with concomitant IBD varies considerably between studies. This raises the question whether all PSC patients would show intestinal inflammation if screened thoroughly, even in the absence of symptoms. METHODS: To address this question, we collected intestinal biopsies of healthy controls (n = 34), PSC (n = 25), PSC-IBD (n = 41), and IBD (n = 51) patients in a cross-sectional study and carried out cytokine expression profiling, 16S sequencing, in-depth histology, and endoscopy scoring. RESULTS: We found that the vast majority of PSC patients even without clinically manifest IBD showed infiltration of immune cells and increased expression of IL17A and IFNG in intestinal biopsies. However, expression of IL10 and FOXP3 were likewise increased, which may explain why these PSC patients have intestinal inflammation only on a molecular level. This subclinical inflammation in PSC patients was focused in the distal colon, whereas PSC-IBD patients showed inflammation either at the distal colon or on the right side of the colon and the terminal ileum. Furthermore, we observed that PSC patients without IBD showed signs of dysbiosis and exhibited a distinct microbial profile compared with healthy controls. CONCLUSIONS: We found a gradient of intestinal inflammation in the vast majority of PSC patients even in the absence of IBD. Thus, further studies evaluating the effect of anti-inflammatory therapies in PSC patients and their impact on the emergence of clinically manifest IBD and colorectal cancer development are needed.

5.
Sci Rep ; 13(1): 11505, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460665

ABSTRACT

The infiltration of immune cells into sites of inflammation is one key feature of immune mediated inflammatory diseases. A detailed assessment of the in vivo dynamics of relevant cell subtypes could booster the understanding of this disease and the development of novel therapies. We show in detail how advanced X-ray fluorescence imaging enables such quantitative in vivo cell tracking, offering solutions that could pave the way beyond what other imaging modalities provide today. The key for this achievement is a detailed study of the spectral background contribution from multiple Compton scattering in a mouse-scaled object when this is scanned with a monochromatic pencil X-ray beam from a synchrotron. Under optimal conditions, the detection sensitivity is sufficient for detecting local accumulations of the labelled immune cells, hence providing experimental demonstration of in vivo immune cell tracking in mice.


Subject(s)
Cell Tracking , Tomography, X-Ray Computed , Animals , Mice , Tomography, X-Ray Computed/methods , X-Rays , Radiography , Optical Imaging
6.
Front Oncol ; 13: 1170502, 2023.
Article in English | MEDLINE | ID: mdl-37324022

ABSTRACT

Background: The immune system plays a pivotal role in cancer progression. Interleukin 22 binding protein (IL-22BP), a natural antagonist of the cytokine interleukin 22 (IL-22) has been shown to control the progression of colorectal cancer (CRC). However, the role of IL-22BP in the process of metastasis formation remains unknown. Methods: We used two different murine in vivo metastasis models using the MC38 and LLC cancer cell lines and studied lung and liver metastasis formation after intracaecal or intrasplenic injection of cancer cells. Furthermore, IL22BP expression was measured in a clinical cohort of CRC patients and correlated with metastatic tumor stages. Results: Our data indicate that low levels of IL-22BP are associated with advanced (metastatic) tumor stages in colorectal cancer. Using two different murine in vivo models we show that IL-22BP indeed controls the progression of liver but not lung metastasis in mice. Conclusions: We here demonstrate a crucial role of IL-22BP in controlling metastasis progression. Thus, IL-22 might represent a future therapeutic target against the progression of metastatic CRC.

7.
J Hepatol ; 79(1): 150-166, 2023 07.
Article in English | MEDLINE | ID: mdl-36870611

ABSTRACT

BACKGROUND & AIMS: Patients with chronic liver disease (CLD), including cirrhosis, are at increased risk of intractable viral infections and are hyporesponsive to vaccination. Hallmarks of CLD and cirrhosis include microbial translocation and elevated levels of type I interferon (IFN-I). We aimed to investigate the relevance of microbiota-induced IFN-I in the impaired adaptive immune responses observed in CLD. METHODS: We combined bile duct ligation (BDL) and carbon tetrachloride (CCl4) models of liver injury with vaccination or lymphocytic choriomeningitis virus infection in transgenic mice lacking IFN-I in myeloid cells (LysM-Cre IFNARflox/flox), IFNAR-induced IL-10 (MX1-Cre IL10flox/flox) or IL-10R in T cells (CD4-DN IL-10R). Key pathways were blocked in vivo with specific antibodies (anti-IFNAR and anti-IL10R). We assessed T-cell responses and antibody titers after HBV and SARS-CoV-2 vaccinations in patients with CLD and healthy individuals in a proof-of-concept clinical study. RESULTS: We demonstrate that BDL- and CCL4-induced prolonged liver injury leads to impaired T-cell responses to vaccination and viral infection in mice, subsequently leading to persistent infection. We observed a similarly defective T-cell response to vaccination in patients with cirrhosis. Innate sensing of translocated gut microbiota induced IFN-I signaling in hepatic myeloid cells that triggered excessive IL-10 production upon viral infection. IL-10R signaling in antigen-specific T cells rendered them dysfunctional. Antibiotic treatment and inhibition of IFNAR or IL-10Ra restored antiviral immunity without detectable immune pathology in mice. Notably, IL-10Ra blockade restored the functional phenotype of T cells from vaccinated patients with cirrhosis. CONCLUSION: Innate sensing of translocated microbiota induces IFN-/IL-10 expression, which drives the loss of systemic T-cell immunity during prolonged liver injury. IMPACT AND IMPLICATIONS: Chronic liver injury and cirrhosis are associated with enhanced susceptibility to viral infections and vaccine hyporesponsiveness. Using different preclinical animal models and patient samples, we identified that impaired T-cell immunity in BDL- and CCL4-induced prolonged liver injury is driven by sequential events involving microbial translocation, IFN signaling leading to myeloid cell-induced IL-10 expression, and IL-10 signaling in antigen-specific T cells. Given the absence of immune pathology after interference with IL-10R, our study highlights a potential novel target to reconstitute T-cell immunity in patients with CLD that can be explored in future clinical studies.


Subject(s)
COVID-19 , Interferon Type I , Mice , Animals , Interleukin-10 , SARS-CoV-2 , Mice, Transgenic , Liver Cirrhosis , Mice, Inbred C57BL
8.
Immunity ; 56(1): 125-142.e12, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36630911

ABSTRACT

During metastasis, cancer cells invade, intravasate, enter the circulation, extravasate, and colonize target organs. Here, we examined the role of interleukin (IL)-22 in metastasis. Immune cell-derived IL-22 acts on epithelial tissues, promoting regeneration and healing upon tissue damage, but it is also associated with malignancy. Il22-deficient mice and mice treated with an IL-22 antibody were protected from colon-cancer-derived liver and lung metastasis formation, while overexpression of IL-22 promoted metastasis. Mechanistically, IL-22 acted on endothelial cells, promoting endothelial permeability and cancer cell transmigration via induction of endothelial aminopeptidase N. Multi-parameter flow cytometry and single-cell sequencing of immune cells isolated during cancer cell extravasation into the liver revealed iNKT17 cells as source of IL-22. iNKT-cell-deficient mice exhibited reduced metastases, which was reversed by injection of wild type, but not Il22-deficient, invariant natural killer T (iNKT) cells. IL-22-producing iNKT cells promoting metastasis were tissue resident, as demonstrated by parabiosis. Thus, IL-22 may present a therapeutic target for prevention of metastasis.


Subject(s)
Interleukins , Liver Neoplasms , Natural Killer T-Cells , Animals , Mice , Endothelial Cells/metabolism , Interleukins/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Mice, Inbred C57BL , Natural Killer T-Cells/metabolism , Colorectal Neoplasms/metabolism , Interleukin-22
9.
Cell Rep ; 38(13): 110565, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35354043

ABSTRACT

Interleukin (IL)-10 is considered a prototypical anti-inflammatory cytokine, significantly contributing to the maintenance and reestablishment of immune homeostasis. Accordingly, it has been shown in the intestine that IL-10 produced by Tregs can act on effector T cells, thereby limiting inflammation. Herein, we investigate whether this role also applies to IL-10 produced by T cells during central nervous system (CNS) inflammation. During neuroinflammation, both CNS-resident and -infiltrating cells produce IL-10; yet, as IL-10 has a pleotropic function, the exact contribution of the different cellular sources is not fully understood. We find that T-cell-derived IL-10, but not other relevant IL-10 sources, can promote inflammation in experimental autoimmune encephalomyelitis. Furthermore, in the CNS, T-cell-derived IL-10 acts on effector T cells, promoting their survival and thereby enhancing inflammation and CNS autoimmunity. Our data indicate a pro-inflammatory role of T-cell-derived IL-10 in the CNS.


Subject(s)
Interleukin-10 , T-Lymphocytes , Animals , CD4-Positive T-Lymphocytes , Cell Survival , Central Nervous System , Inflammation , Interleukin-10/physiology , Mice
10.
Sci Rep ; 12(1): 2903, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35190621

ABSTRACT

X-ray fluorescence imaging (XFI) is a non-invasive detection method of small quantities of elements, which can be excited to emit fluorescence x-ray photons upon irradiation with an incident x-ray beam. In particular, it can be used to measure nanoparticle uptake in cells and tissue, thus making it a versatile medical imaging modality. However, due to substantially increased multiple Compton scattering background in the measured x-ray spectra, its sensitivity severely decreases for thicker objects, so far limiting its applicability for tracking very small quantities under in-vivo conditions. Reducing the detection limit would enable the ability to track labeled cells, promising new insights into immune response and pharmacokinetics. We present a synchrotron-based approach for reducing the minimal detectable marker concentration by demonstrating the feasibility of XFI for measuring the yet inaccessible distribution of the endogenous iodine in murine thyroids under in-vivo conform conditions. This result can be used as a reference case for the design of future preclinical XFI applications as mentioned above.


Subject(s)
Iodine/metabolism , Spectrometry, X-Ray Emission/methods , Thyroid Gland/metabolism , Animals , Feasibility Studies , Limit of Detection , Mice, Inbred C57BL , Thyroid Gland/diagnostic imaging
11.
Cells ; 10(11)2021 11 05.
Article in English | MEDLINE | ID: mdl-34831261

ABSTRACT

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing agent and its inhibition proved to inhibit T-cell activation. However, the impact of the NAADP signaling on CD4+ T-cell differentiation and plasticity and on the inflammation in tissues other than the central nervous system remains unclear. In this study, we used an antagonist of NAADP signaling, trans-Ned 19, to study the role of NAADP in CD4+ T-cell differentiation and effector function. Partial blockade of NAADP signaling in naïve CD4+ T cells in vitro promoted the differentiation of Th17 cells. Interestingly, trans-Ned 19 also promoted the production of IL-10, co-expression of LAG-3 and CD49b and increased the suppressive capacity of Th17 cells. Moreover, using an IL-17A fate mapping mouse model, we showed that NAADP inhibition promotes conversion of Th17 cells into regulatory T cells in vitro and in vivo. In line with the results, we found that inhibiting NAADP ameliorates disease in a mouse model of intestinal inflammation. Thus, these results reveal a novel function of NAADP in controlling the differentiation and plasticity of CD4+ T cells.


Subject(s)
Calcium Signaling , Carbolines/pharmacology , Cell Plasticity , NADP/analogs & derivatives , Piperazines/pharmacology , Th17 Cells/cytology , Th17 Cells/immunology , Animals , CD3 Complex/metabolism , Calcium/metabolism , Calcium Signaling/drug effects , Cell Differentiation/drug effects , Cell Plasticity/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Inflammation/pathology , Interleukin-10/metabolism , Intestines/pathology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Mice, Transgenic , NADP/antagonists & inhibitors , NADP/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Th1 Cells/drug effects , Th1 Cells/immunology , Th17 Cells/drug effects , Up-Regulation/drug effects
12.
J Neuroinflammation ; 18(1): 265, 2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34772416

ABSTRACT

BACKGROUND: Lymphocytes have dichotomous functions in ischemic stroke. Regulatory T cells are protective, while IL-17A from innate lymphocytes promotes the infarct growth. With recent advances of T cell-subtype specific transgenic mouse models it now has become possible to study the complex interplay of T cell subpopulations in ischemic stroke. METHODS: In a murine model of experimental stroke we analyzed the effects of IL-10 on the functional outcome for up to 14 days post-ischemia and defined the source of IL-10 in ischemic brains based on immunohistochemistry, flow cytometry, and bone-marrow chimeric mice. We used neutralizing IL-17A antibodies, intrathecal IL-10 injections, and transgenic mouse models which harbor a deletion of the IL-10R on distinct T cell subpopulations to further explore the interplay between IL-10 and IL-17A pathways in the ischemic brain. RESULTS: We demonstrate that IL-10 deficient mice exhibit significantly increased infarct sizes on days 3 and 7 and enlarged brain atrophy and impaired neurological outcome on day 14 following tMCAO. In ischemic brains IL-10 producing immune cells included regulatory T cells, macrophages, and microglia. Neutralization of IL-17A following stroke reversed the worse outcome in IL-10 deficient mice and intracerebral treatment with recombinant IL-10 revealed that IL-10 controlled IL-17A positive lymphocytes in ischemic brains. Importantly, IL-10 acted differentially on αß and γδ T cells. IL-17A producing CD4+ αß T cells were directly controlled via their IL-10-receptor (IL-10R), whereas IL-10 by itself had no direct effect on the IL-17A production in γδ T cells. The control of the IL-17A production in γδ T cells depended on an intact IL10R signaling in regulatory T cells (Tregs). CONCLUSIONS: Taken together, our data indicate a key function of IL-10 in restricting the detrimental IL-17A-signaling in stroke and further supports that IL-17A is a therapeutic opportunity for stroke treatment.


Subject(s)
Interleukin-10/therapeutic use , Interleukin-17/antagonists & inhibitors , Ischemic Stroke/drug therapy , Animals , Antibodies, Neutralizing/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Immunohistochemistry , Infarction, Middle Cerebral Artery/prevention & control , Injections, Spinal , Interleukin-10/administration & dosage , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Interleukin-10/antagonists & inhibitors , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Treatment Outcome
13.
Sci Adv ; 7(33)2021 08.
Article in English | MEDLINE | ID: mdl-34389533

ABSTRACT

Malignant pleural effusion (MPE) results from the capacity of several human cancers to metastasize to the pleural cavity. No effective treatments are currently available, reflecting our insufficient understanding of the basic mechanisms leading to MPE progression. Here, we found that efferocytosis through the receptor tyrosine kinases AXL and MERTK led to the production of interleukin-10 (IL-10) by four distinct pleural cavity macrophage (Mφ) subpopulations characterized by different metabolic states and cell chemotaxis properties. In turn, IL-10 acts on dendritic cells (DCs) inducing the production of tissue inhibitor of metalloproteinases 1 (TIMP1). Genetic ablation of Axl and Mertk in Mφs or IL-10 receptor in DCs or Timp1 substantially reduced MPE progression. Our results delineate an inflammatory cascade-from the clearance of apoptotic cells by Mφs, to production of IL-10, to induction of TIMP1 in DCs-that facilitates MPE progression. This inflammatory cascade offers a series of therapeutic targets for MPE.

14.
Front Immunol ; 12: 778916, 2021.
Article in English | MEDLINE | ID: mdl-35095852

ABSTRACT

Antigen recognition by the T-cell receptor induces a cytosolic Ca2+ signal that is crucial for T-cell function. The Ca2+ channel TRPM2 (transient receptor potential cation channel subfamily M member 2) has been shown to facilitate influx of extracellular Ca2+ through the plasma membrane of T cells. Therefore, it was suggested that TRPM2 is involved in T-cell activation and differentiation. However, these results are largely derived from in vitro studies using T-cell lines and non-physiologic means of TRPM2 activation. Thus, the relevance of TRPM2-mediated Ca2+ signaling in T cells remains unclear. Here, we use TRPM2-deficient mice to investigate the function of TRPM2 in T-cell activation and differentiation. In response to TCR stimulation in vitro, Trpm2-/- and WT CD4+ and CD8+ T cells similarly upregulated the early activation markers NUR77, IRF4, and CD69. We also observed regular proliferation of Trpm2-/- CD8+ T cells and unimpaired differentiation of CD4+ T cells into Th1, Th17, and Treg cells under specific polarizing conditions. In vivo, Trpm2-/- and WT CD8+ T cells showed equal specific responses to Listeria monocytogenes after infection of WT and Trpm2-/- mice and after transfer of WT and Trpm2-/- CD8+ T cells into infected recipients. CD4+ T-cell responses were investigated in the model of anti-CD3 mAb-induced intestinal inflammation, which allows analysis of Th1, Th17, Treg, and Tr1-cell differentiation. Here again, we detected similar responses of WT and Trpm2-/- CD4+ T cells. In conclusion, our results argue against a major function of TRPM2 in T-cell activation and differentiation.


Subject(s)
Cell Differentiation/immunology , Lymphocyte Activation/immunology , TRPM Cation Channels/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Calcium Signaling/immunology , Cell Proliferation/physiology , Listeria monocytogenes/immunology , Listeriosis/immunology , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Th17 Cells/immunology
15.
Pediatr Res ; 90(1): 191-196, 2021 07.
Article in English | MEDLINE | ID: mdl-33173181

ABSTRACT

BACKGROUND: Early-onset sepsis (EOS) remains a substantial cause of morbidity and mortality among neonates. Yet, currently available biological parameters have not proven to be accurate enough to predict EOS reliably. This study aimed to determine serum concentrations of 13 cytokines in umbilical cord blood and evaluate their diagnostic value for EOS. METHODS: A prospective single-center study that included analysis of umbilical cord blood of term and preterm neonates who were born from March 2017 to November 2017. Using ELISA analysis, 13 cytokines were simultaneously quantified and correlated with the development of EOS. RESULTS: Four hundred and seventy-four neonates were included, of which seven met the criteria for culture-positive EOS. Interleukin (IL)-6 (p < 0.001), IL-9 (p = 0.003), and IL-21 (p < 0.001) were significantly increased in neonates with EOS compared to controls. Sensitivity and specificity for IL-6, IL-9, and IL-21 at the defined cut-off points were 85.7 and 77.3%, 71.4 and 62.5%, and 71.4 and 52.0%, respectively. CONCLUSIONS: In neonates with EOS, IL-9 and IL-21 are significantly elevated and may be employed in the diagnostic of EOS. However, diagnostic accuracy remains lower than with IL-6. Values of 13 T cell cytokines may be used as reference values for future studies in neonates. IMPACT: Interleukin-9 (IL-9) and interleukin-21 (IL-21) are significantly elevated in neonates with early-onset sepsis. IL-9 and IL-21 have been shown to play a specific role in neonatal sepsis. Neonatal reference values were generated for several cytokines. IL-9 and IL-21 might be attractive biomarkers for neonatal sepsis in future. This study is likely to promote further research in this area. Values of several T cell cytokines may be used as reference values for future studies in neonates.


Subject(s)
Cytokines/blood , Infant, Newborn, Diseases/diagnosis , Sepsis/diagnosis , Biomarkers/blood , Female , Fetal Blood/metabolism , Humans , Infant, Newborn , Infant, Newborn, Diseases/blood , Male , Prospective Studies , ROC Curve , Sensitivity and Specificity , Sepsis/blood
17.
Nat Commun ; 11(1): 2608, 2020 05 25.
Article in English | MEDLINE | ID: mdl-32451418

ABSTRACT

IL-22 has dual functions during tumorigenesis. Short term IL-22 production protects against genotoxic stress, whereas uncontrolled IL-22 activity promotes tumor growth; therefore, tight regulation of IL-22 is essential. TGF-ß1 promotes the differentiation of Th17 cells, which are known to be a major source of IL-22, but the effect of TGF-ß signaling on the production of IL-22 in CD4+ T cells is controversial. Here we show an increased presence of IL-17+IL-22+ cells and TGF-ß1 in colorectal cancer compared to normal adjacent tissue, whereas the frequency of IL-22 single producing cells is not changed. Accordingly, TGF-ß signaling in CD4+ T cells (specifically Th17 cells) promotes the emergence of IL-22-producing Th17 cells and thereby tumorigenesis in mice. IL-22 single producing T cells, however, are not dependent on TGF-ß signaling. We show that TGF-ß, via AhR induction, and PI3K signaling promotes IL-22 production in Th17 cells.


Subject(s)
Colitis/complications , Colonic Neoplasms/etiology , Interleukins/biosynthesis , Th17 Cells/immunology , Transforming Growth Factor beta/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinogenesis/immunology , Cell Differentiation , Colitis/immunology , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Colorectal Neoplasms/etiology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Disease Models, Animal , Female , Humans , Interleukin-17/genetics , Interleukin-17/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction/immunology , Th17 Cells/pathology , Transforming Growth Factor beta1/metabolism , Interleukin-22
18.
Semin Immunol ; 44: 101335, 2019 08.
Article in English | MEDLINE | ID: mdl-31734129

ABSTRACT

Interleukin (IL)-10 is considered a prototypical anti-inflammatory cytokine, which significantly contributes to the maintenance and reestablishment of immune homeostasis. However, this classical view fails to fully describe the pleiotropic roles of IL-10. Indeed, IL-10 can also promote immune responses, e.g. by supporting B-cell and CD8+ T-cell activation. The reasons for these seemingly opposing functions are unclear to a large extent. Recent and previous studies suggest that the cellular source and the microenvironment impact the function of IL-10. However, studies addressing the mechanisms which determine whether IL-10 promotes inflammation or controls it have just begun. This review first summarizes the recent findings on the heterogeneity of IL-10 producing T cells and their impact on the target cells. Finally, we will propose two possible explanations for the dual functions of IL-10.


Subject(s)
Interleukin-10/immunology , T-Lymphocytes/immunology , Animals , Humans , Interleukin-10/therapeutic use
19.
Nat Commun ; 9(1): 5457, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30575716

ABSTRACT

IL-10 is a prototypical anti-inflammatory cytokine, which is fundamental to the maintenance of immune homeostasis, especially in the intestine. There is an assumption that cells producing IL-10 have an immunoregulatory function. However, here we report that IL-10-producing CD4+ T cells are phenotypically and functionally heterogeneous. By combining single cell transcriptome and functional analyses, we identified a subpopulation of IL-10-producing Foxp3neg CD4+ T cells that displays regulatory activity unlike other IL-10-producing CD4+ T cells, which are unexpectedly pro-inflammatory. The combinatorial expression of co-inhibitory receptors is sufficient to discriminate IL-10-producing CD4+ T cells with regulatory function from others and to identify them across different tissues and disease models in mice and humans. These regulatory IL-10-producing Foxp3neg CD4+ T cells have a unique transcriptional program, which goes beyond the regulation of IL-10 expression. Finally, we found that patients with Inflammatory Bowel Disease demonstrate a deficiency in this specific regulatory T-cell subpopulation.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Inflammatory Bowel Diseases/immunology , Interleukin-10/metabolism , Animals , Humans , Mice, Inbred C57BL , Single-Cell Analysis , Transcriptome
20.
J Immunol ; 201(12): 3558-3568, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30446566

ABSTRACT

Inflammatory bowel disease is associated with extraintestinal diseases such as primary sclerosing cholangitis in the liver. Interestingly, it is known that an imbalance between Foxp3+ regulatory T cells (Treg) and Th17 cells is involved in inflammatory bowel disease and also in primary sclerosing cholangitis. To explain these associations, one hypothesis is that intestinal inflammation and barrier defects promote liver disease because of the influx of bacteria and inflammatory cells to the liver. However, whether and how this is linked to the Treg and Th17 cell imbalance is unclear. To address this, we used dextran sodium sulfate (DSS) and T cell transfer colitis mouse models. We analyzed the pathological conditions of the intestine and liver on histological, cellular, and molecular levels. We observed bacterial translocation and an influx of inflammatory cells, in particular Th17 cells, to the liver during colitis. In the DSS colitis model, in which Treg were concomitantly increased in the liver, we did not observe an overt pathological condition of the liver. In contrast, the T cell-mediated colitis model, in which Treg are not abundant, was associated with marked liver inflammation and a pathological condition. Of note, upon depletion of Treg in DEREG mice, DSS colitis promotes accumulation of Th17 cells and a pathological condition of the liver. Finally, we studied immune cell migration using KAEDE mice and found that some of these cells had migrated directly from the inflamed intestine into the liver. Overall, these data indicate that colitis can promote a pathological condition of the liver and highlight an important role of Treg in controlling colitis-associated liver inflammation.


Subject(s)
Colitis/immunology , Inflammation/immunology , Inflammatory Bowel Diseases/immunology , Liver/pathology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , Cells, Cultured , Dextran Sulfate , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...