Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int Endod J ; 52(4): 424-438, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30244498

ABSTRACT

AIM: To evaluate the potential biostimulatory effects of grape seed extract (GSE) on a primary culture of human pulp cells. METHODOLOGY: Human molars were used to obtain the primary pulp cell culture and 0.5-mm dentine discs. For GSE direct exposure, dose-response (0.0065-6.5%) and time response (1-60 min of contact) were examined. For transdentinal exposure, 0.65% of GSE was tested for 24 h. Cellular metabolism, nitric oxide and collagen production, and cell morphology alterations were assessed at periods of 24 and 72 h. After cell differentiation and direct exposure to GSE, the total protein production (TP), alkaline phosphatase activity (ALP) and formation of mineralization nodules (MN) were assessed. The results were analysed by parametric tests or non-parametric tests (α = 0.05). RESULTS: The lower concentration of GSE tested (0.0065%) was associated with an increase in cellular metabolism, a reduction in the production of nitric oxide and an increase in extracellular matrix synthesis (collagen). Distinct behaviours were observed for the different concentrations, without a reduction of cellular metabolism >10% compared with the control, either when applied directly or transdentinally. SEM revealed no significant change in cell morphology, except for the positive control (H2 O2 ). There was no difference in TP, ALP or MN between the control group and the group exposed to GSE. CONCLUSIONS: Treatment with grape seed extract, even at the highest concentration and longest period, caused neither direct nor transdentinal cytotoxic effects on human pulp cells. Grape seed extract components may play a biostimulatory role and protect dental pulp cells when in direct contact.


Subject(s)
Grape Seed Extract , Proanthocyanidins , Cell Differentiation , Dental Pulp , Dentin , Humans
2.
J Oral Rehabil ; 38(7): 541-6, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21058972

ABSTRACT

The effect of biomodification of dentin matrices using collagen cross-linkers, glutaraldehyde (GD) and grape seed extract (GSE), on the reduced modulus of elasticity (Er) and nanohardness (H) of the hybrid layer and underlying dentin was investigated at the dentin-resin bonded interface. The coronal dentin of nine molars were exposed and divided into groups: 5% GD, 6·5% GSE and control. Control samples were etched, bonded with Adper Single Bond Plus and Premise composite. GD and GSE were applied for 1 h prior to bonding procedures. After 24 h, samples were sectioned, and resin-dentin beams were either kept in distilled water or exposed to collagenase treatment for 24 h. Nano-indentations were performed at the hybrid layer and underlying dentin. GD and GSE treatment increased the Er and H of resin-dentin interface structures when compared to the control group (P<0·05), particularly the hybrid layer, and may be a promising novel approach to strengthen the dentin-resin bonded interface structures when using these adhesive system and resin-based composite.


Subject(s)
Composite Resins/chemical synthesis , Dental Bonding/methods , Dentin-Bonding Agents/chemistry , Glutaral/chemical synthesis , Grape Seed Extract/chemical synthesis , Adhesiveness , Dentin , Elasticity , Humans , Materials Testing , Nanotechnology/methods , Surface Properties
3.
J Oral Rehabil ; 34(3): 213-21, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17302950

ABSTRACT

The aim of this study was to examine the effectiveness of single-step self-etching adhesives in preventing nanoleakage over a 90-day water-storage period, and analyse the ultramorphological characteristics of resin-dentin interfaces. Three single-step self-etching adhesives were evaluated: Adper Prompt L-Pop - LP (3M ESPE), iBond - iB (Heraeus Kulzer), and Clearfil Tri-S Bond - S3 (Kuraray). Bonded specimens were sectioned into 0.9-mm thick slabs and stored in water for 1, 60 or 90 days. After the storage periods, a silver tracer solution was used to reveal nanometer-sized spaces and evidence of degradation within resin-dentin interfaces. Epoxy resin-embedded sections were prepared, and the interfaces observed with the TEM. Nanoleakage patterns were compared among adhesives and storage periods using image analysis software. Data were statistically analysed by two-way anova and Tukey test. Nanoleakage was observed in all resin-dentin interfaces produced by the single-step self-etching adhesives. Results showed that LP presented the lowest silver deposition means at 1 day. However, after 60 and 90 days, the area of silver deposition significantly increased for LP. iB presented intense silver deposition after 1 day and a small increase after 90 days. S3 presented the lowest silver deposition means after 60 and 90 days of water-storage.


Subject(s)
Adhesives , Dental Leakage/prevention & control , Denture Retention/methods , Resin Cements , Dental Etching , Dentin-Bonding Agents , Humans , Microscopy, Electron/methods , Molar/chemistry , Molar/ultrastructure , Silver/analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL