Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Med Chem ; 64(3): 1545-1557, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33428418

ABSTRACT

The 90 kD heat shock proteins (Hsp90) are molecular chaperones that are responsible for the folding of select proteins, many of which are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-molecule inhibitors of Hsp90 have entered clinical trials for the treatment of cancer, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms, which may lead to adverse effects. The development of Hsp90 isoform-selective inhibitors represents an alternative approach toward the treatment of cancer and may limit some of these detriments. Described herein, is a structure-based approach to develop isoform-selective inhibitors of Hsp90ß, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90ß-selective inhibitors as a method for overcoming the detriments associated with pan-inhibition.


Subject(s)
HSP90 Heat-Shock Proteins/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Silencing , HSP90 Heat-Shock Proteins/genetics , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Models, Molecular , Molecular Conformation , Neoplasms/drug therapy , Protein Folding , Small Molecule Libraries , Structure-Activity Relationship , Substrate Specificity , Urinary Bladder Neoplasms/drug therapy
2.
Cancer Chemother Pharmacol ; 86(6): 815-827, 2020 12.
Article in English | MEDLINE | ID: mdl-33095286

ABSTRACT

PURPOSE: We conducted a phase 1 trial of the HSP90 inhibitor onalespib in combination with the CDK inhibitor AT7519, in patients with advanced solid tumors to determine the safety profile and maximally tolerated dose, pharmacokinetics, preliminary antitumor activity, and to assess the pharmacodynamic (PD) effects on HSP70 expression in patient-derived PBMCs and plasma. METHODS: This study followed a 3 + 3 trial design with 1 week of intravenous (IV) onalespib alone, followed by onalespib/AT7519 (IV) on days 1, 4, 8, and 11 of a 21-days cycle. PK and PD samples were collected at baseline, after onalespib alone, and following combination therapy. RESULTS: Twenty-eight patients were treated with the demonstration of downstream target engagement of HSP70 expression in plasma and PBMCs. The maximally tolerated dose was onalespib 80 mg/m2 IV + AT7519 21 mg/m2 IV. Most common drug-related adverse events included Grade 1/2 diarrhea (79%), fatigue (54%), mucositis (57%), nausea (46%), and vomiting (50%). Partial responses were seen in a palate adenocarcinoma and Sertoli-Leydig tumor; a colorectal and an endometrial cancer patient both remained on study for ten cycles with stable disease as the best response. There were no clinically relevant PK interactions for either drug. CONCLUSIONS: Combined onalespib and AT7519 is tolerable, though below monotherapy RP2D. Promising preliminary clinical activity was seen. Further benefit may be seen with the incorporation of molecular signature pre-selection. Further biomarker development will require the assessment of the on-target impact on relevant client proteins in tumor tissue.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/toxicity , Benzamides/toxicity , Isoindoles/toxicity , Neoplasms/drug therapy , Piperidines/toxicity , Pyrazoles/toxicity , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Benzamides/administration & dosage , Benzamides/pharmacokinetics , Drug Administration Schedule , Female , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP70 Heat-Shock Proteins/blood , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Humans , Infusions, Intravenous , Isoindoles/administration & dosage , Isoindoles/pharmacokinetics , Male , Maximum Tolerated Dose , Middle Aged , Neoplasm Staging , Neoplasms/blood , Neoplasms/diagnosis , Neoplasms/pathology , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Proof of Concept Study , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Pyrazoles/administration & dosage , Pyrazoles/pharmacokinetics
3.
Cell Rep ; 30(6): 1798-1810.e4, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32049011

ABSTRACT

The reliance of many cancers on aerobic glycolysis has stimulated efforts to develop lactate dehydrogenase (LDH) inhibitors. However, despite significant efforts, LDH inhibitors (LDHi) with sufficient specificity and in vivo activity to determine whether LDH is a feasible drug target are lacking. We describe an LDHi with potent, on-target, in vivo activity. Using hyperpolarized magnetic resonance spectroscopic imaging (HP-MRSI), we demonstrate in vivo LDH inhibition in two glycolytic cancer models, MIA PaCa-2 and HT29, and we correlate depth and duration of LDH inhibition with direct anti-tumor activity. HP-MRSI also reveals a metabolic rewiring that occurs in vivo within 30 min of LDH inhibition, wherein pyruvate in a tumor is redirected toward mitochondrial metabolism. Using HP-MRSI, we show that inhibition of mitochondrial complex 1 rapidly redirects tumor pyruvate toward lactate. Inhibition of both mitochondrial complex 1 and LDH suppresses metabolic plasticity, causing metabolic quiescence in vitro and tumor growth inhibition in vivo.


Subject(s)
Drug Therapy, Combination/methods , L-Lactate Dehydrogenase/antagonists & inhibitors , Neoplasms/immunology , Animals , Humans , Mice , Neoplasms/drug therapy
4.
J Thromb Haemost ; 18(5): 1197-1209, 2020 05.
Article in English | MEDLINE | ID: mdl-32022992

ABSTRACT

BACKGROUND: Platelets play a pivotal role in hemostasis, wound healing, and inflammation, and are thus implicated in a variety of diseases, including cancer. Platelet function is associated with release of granule content, cellular shape change, and upregulation of receptors that promote establishment of a thrombus and maintenance of hemostasis. OBJECTIVES: The role of heat shock proteins (Hsps) in modulating platelet function has been studied for a number of years, but comparative roles of individual Hsps have not been thoroughly examined. METHODS: We utilized a panel of specific inhibitors of Hsp40, Hsp70, Hsp90, and Grp94 (the endoplasmic reticulum homolog of Hsp90) to assess their impact on several aspects of platelet function. RESULTS: Inhibition of each of the aforementioned Hsps reduced alpha granule release. In contrast, there was some selectivity in impacts on dense granule release. Thromboxane synthesis was impaired after exposure to inhibitors of Hsp40, Hsp90, and Grp94, but not after inhibition of Hsp70. Both expression of active glycoprotein IIb/IIIa (GPIIb/IIIa) and fibrinogen-induced platelet shape change were diminished by our inhibitors. In contrast, aggregation was selectively abrogated after inhibition of Hsp40 or Hsp90. Lastly, activated platelet-cancer cell interactions were reduced by inhibition of both Hsp70 and Grp94. CONCLUSIONS: These data suggest the importance of Hsp networks in regulating platelet activity.


Subject(s)
Heat-Shock Proteins , Platelet Glycoprotein GPIIb-IIIa Complex , Blood Platelets , Heat-Shock Proteins/pharmacology , Hemostasis , Humans , Platelet Aggregation , Platelet Aggregation Inhibitors/pharmacology
5.
BMC Biol ; 18(1): 10, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31987035

ABSTRACT

BACKGROUND: The molecular chaperone TRAP1, the mitochondrial isoform of cytosolic HSP90, remains poorly understood with respect to its pivotal role in the regulation of mitochondrial metabolism. Most studies have found it to be an inhibitor of mitochondrial oxidative phosphorylation (OXPHOS) and an inducer of the Warburg phenotype of cancer cells. However, others have reported the opposite, and there is no consensus on the relevant TRAP1 interactors. This calls for a more comprehensive analysis of the TRAP1 interactome and of how TRAP1 and mitochondrial metabolism mutually affect each other. RESULTS: We show that the disruption of the gene for TRAP1 in a panel of cell lines dysregulates OXPHOS by a metabolic rewiring that induces the anaplerotic utilization of glutamine metabolism to replenish TCA cycle intermediates. Restoration of wild-type levels of OXPHOS requires full-length TRAP1. Whereas the TRAP1 ATPase activity is dispensable for this function, it modulates the interactions of TRAP1 with various mitochondrial proteins. Quantitatively by far, the major interactors of TRAP1 are the mitochondrial chaperones mtHSP70 and HSP60. However, we find that the most stable stoichiometric TRAP1 complex is a TRAP1 tetramer, whose levels change in response to both a decline and an increase in OXPHOS. CONCLUSIONS: Our work provides a roadmap for further investigations of how TRAP1 and its interactors such as the ATP synthase regulate cellular energy metabolism. Our results highlight that TRAP1 function in metabolism and cancer cannot be understood without a focus on TRAP1 tetramers as potentially the most relevant functional entity.


Subject(s)
HSP90 Heat-Shock Proteins/genetics , Homeostasis , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Molecular Chaperones/genetics , Oxidative Phosphorylation , Cell Line , HSP90 Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones/metabolism
6.
Nat Commun ; 10(1): 2574, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31189925

ABSTRACT

Complex conformational dynamics are essential for function of the dimeric molecular chaperone heat shock protein 90 (Hsp90), including transient, ATP-biased N-domain dimerization that is necessary to attain ATPase competence. The intrinsic, but weak, ATP hydrolyzing activity of human Hsp90 is markedly enhanced by the co-chaperone Aha1. However, the cellular concentration of Aha1 is substoichiometric relative to Hsp90. Here we report that initial recruitment of this cochaperone to Hsp90 is markedly enhanced by phosphorylation of a highly conserved tyrosine (Y313 in Hsp90α) in the Hsp90 middle domain. Importantly, phosphomimetic mutation of Y313 promotes formation of a transient complex in which both N- and C-domains of Aha1 bind to distinct surfaces of the middle domains of opposing Hsp90 protomers prior to ATP-directed N-domain dimerization. Thus, Y313 represents a phosphorylation-sensitive conformational switch, engaged early after client loading, that affects both local and long-range conformational dynamics to facilitate initial recruitment of Aha1 to Hsp90.


Subject(s)
Adenosine Triphosphatases/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Protein Domains/genetics , Adenosine Triphosphatases/genetics , Glutamic Acid/genetics , HEK293 Cells , HSP90 Heat-Shock Proteins/genetics , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Phosphorylation/physiology , Structure-Activity Relationship , Tyrosine/genetics , Tyrosine/metabolism
7.
Sci Rep ; 8(1): 6976, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29725069

ABSTRACT

Heat shock factor 1 (HSF1) initiates a broad transcriptional response to proteotoxic stress while also mediating a cancer-specific transcriptional program. HSF1 is thought to be regulated by molecular chaperones, including Heat Shock Protein 90 (HSP90). HSP90 is proposed to sequester HSF1 in unstressed cells, but visualization of this interaction in vivo requires protein crosslinking. In this report, we show that HSP90 binding to HSF1 depends on HSP90 conformation and is only readily visualized for the ATP-dependent, N-domain dimerized chaperone, a conformation only rarely sampled by mammalian HSP90. We have used this mutationally fixed conformation to map HSP90 binding sites on HSF1. Further, we show that ATP-competitive, N-domain targeted HSP90 inhibitors disrupt this interaction, resulting in the increased duration of HSF1 occupancy of the hsp70 promoter and significant prolongation of both the constitutive and heat-induced HSF1 transcriptional activity. While our data do not support a role for HSP90 in sequestering HSF1 monomers to suppress HSF1 transcriptional activity, our findings do identify a noncanonical role for HSP90 in providing dynamic modulation of HSF1 activity by participating in removal of HSF1 trimers from heat shock elements in DNA, thus terminating the heat shock response.


Subject(s)
Gene Expression Regulation , HSP90 Heat-Shock Proteins/metabolism , Heat Shock Transcription Factors/metabolism , Binding Sites , DNA/metabolism , Enzyme Inhibitors/metabolism , HEK293 Cells , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Humans , Promoter Regions, Genetic , Protein Binding
8.
Cancer Res ; 78(14): 4022-4035, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29764864

ABSTRACT

Castration-resistant prostate cancer (CRPC) is characterized by reactivation of androgen receptor (AR) signaling, in part by elevated expression of AR splice variants (ARv) including ARv7, a constitutively active, ligand binding domain (LBD)-deficient variant whose expression has been correlated with therapeutic resistance and poor prognosis. In a screen to identify small-molecule dual inhibitors of both androgen-dependent and androgen-independent AR gene signatures, we identified the chalcone C86. Binding studies using purified proteins and CRPC cell lysates revealed C86 to interact with Hsp40. Pull-down studies using biotinylated-C86 found Hsp40 present in a multiprotein complex with full-length (FL-) AR, ARv7, and Hsp70 in CRPC cells. Treatment of CRPC cells with C86 or the allosteric Hsp70 inhibitor JG98 resulted in rapid protein destabilization of both FL-AR and ARv, including ARv7, concomitant with reduced FL-AR- and ARv7-mediated transcriptional activity. The glucocorticoid receptor, whose elevated expression in a subset of CRPC also leads to androgen-independent AR target gene transcription, was also destabilized by inhibition of Hsp40 or Hsp70. In vivo, Hsp40 or Hsp70 inhibition demonstrated single-agent and combinatorial activity in a 22Rv1 CRPC xenograft model. These data reveal that, in addition to recognized roles of Hsp40 and Hsp70 in FL-AR LBD remodeling, ARv lacking the LBD remain dependent on molecular chaperones for stability and function. Our findings highlight the feasibility and potential benefit of targeting the Hsp40/Hsp70 chaperone axis to treat prostate cancer that has become resistant to standard antiandrogen therapy.Significance: These findings highlight the feasibility of targeting the Hsp40/Hsp70 chaperone axis to treat CRPC that has become resistant to standard antiandrogen therapy. Cancer Res; 78(14); 4022-35. ©2018 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , A549 Cells , Alternative Splicing/drug effects , Androgen Antagonists/pharmacology , Androgens/metabolism , Animals , COS Cells , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , HEK293 Cells , Humans , Male , Mice, Nude , RNA Splicing/drug effects , Signal Transduction/drug effects , Transcription, Genetic/drug effects
9.
Nat Commun ; 9(1): 265, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343704

ABSTRACT

During the Hsp90-mediated chaperoning of protein kinases, the core components of the machinery, Hsp90 and the cochaperone Cdc37, recycle between different phosphorylation states that regulate progression of the chaperone cycle. We show that Cdc37 phosphorylation at Y298 results in partial unfolding of the C-terminal domain and the population of folding intermediates. Unfolding facilitates Hsp90 phosphorylation at Y197 by unmasking a phosphopeptide sequence, which serves as a docking site to recruit non-receptor tyrosine kinases to the chaperone complex via their SH2 domains. In turn, Hsp90 phosphorylation at Y197 specifically regulates its interaction with Cdc37 and thus affects the chaperoning of only protein kinase clients. In summary, we find that by providing client class specificity, Hsp90 cochaperones such as Cdc37 do not merely assist in client recruitment but also shape the post-translational modification landscape of Hsp90 in a client class-specific manner.


Subject(s)
Cell Cycle Proteins/metabolism , Chaperonins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Protein-Tyrosine Kinases/metabolism , Humans , Phosphorylation , Protein Folding , src Homology Domains
10.
Nat Commun ; 8: 15328, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28537252

ABSTRACT

Heat shock protein 90 (Hsp90) is an essential eukaryotic molecular chaperone. To properly chaperone its clientele, Hsp90 proceeds through an ATP-dependent conformational cycle influenced by posttranslational modifications (PTMs) and assisted by a number of co-chaperone proteins. Although Hsp90 conformational changes in solution have been well-studied, regulation of these complex dynamics in cells remains unclear. Phosphorylation of human Hsp90α at the highly conserved tyrosine 627 has previously been reported to reduce client interaction and Aha1 binding. Here we report that these effects are due to a long-range conformational impact inhibiting Hsp90α N-domain dimerization and involving a region of the middle domain/carboxy-terminal domain interface previously suggested to be a substrate binding site. Although Y627 is not phosphorylated in yeast, we demonstrate that the non-conserved yeast co-chaperone, Hch1, similarly affects yeast Hsp90 (Hsp82) conformation and function, raising the possibility that appearance of this PTM in higher eukaryotes represents an evolutionary substitution for HCH1.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Protein Processing, Post-Translational/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Tyrosine/metabolism , Binding Sites , Chaperonins/metabolism , Evolution, Molecular , HEK293 Cells , HSP90 Heat-Shock Proteins/genetics , Humans , Molecular Chaperones/genetics , Mutation , Phosphorylation/physiology , Protein Binding/physiology , Protein Domains/physiology , Protein Multimerization/physiology , Protein Structure, Secondary/physiology , Saccharomyces cerevisiae Proteins/genetics
11.
Curr Top Med Chem ; 16(25): 2792-804, 2016.
Article in English | MEDLINE | ID: mdl-27072697

ABSTRACT

Heat shock protein-90 (Hsp90) is a molecular chaperone critical to the folding, stability and activity of over 200 client proteins including many responsible for tumor initiation, progression and metastasis. Hsp90 chaperone function is linked to its ATPase activity and Hsp90 inhibitors interfere with this activity, thereby making Hsp90 an attractive target for cancer therapy. Also post-translational modification (PTM) and co-chaperone proteins modulate Hsp90 function, providing additional targets for secondary inhibition. Recent reports have shown that pathogens utilize both their own Hsp90 and that of their host for the propagation of infectious elements. In this review we will summarize our current knowledge of Hsp90 structure and function in both the pathogen and the host. We will focus on the role of Hsp90 in viral and parasitic diseases and the potential beneficial application of Hsp90 inhibitors alone and in combination with disease-specific inhibitors.


Subject(s)
HSP90 Heat-Shock Proteins/antagonists & inhibitors , Filariasis/drug therapy , HIV Infections/drug therapy , HSP90 Heat-Shock Proteins/metabolism , Humans , Leishmaniasis/drug therapy , Mycoses/drug therapy , Protein Processing, Post-Translational , Sarcoma, Kaposi/drug therapy , Trypanosomiasis/drug therapy
12.
Cell Rep ; 14(4): 872-884, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26804907

ABSTRACT

The molecular chaperone Hsp90 protects deregulated signaling proteins that are vital for tumor growth and survival. Tumors generally display sensitivity and selectivity toward Hsp90 inhibitors; however, the molecular mechanism underlying this phenotype remains undefined. We report that the mitotic checkpoint kinase Mps1 phosphorylates a conserved threonine residue in the amino-domain of Hsp90. This, in turn, regulates chaperone function by reducing Hsp90 ATPase activity while fostering Hsp90 association with kinase clients, including Mps1. Phosphorylation of Hsp90 is also essential for the mitotic checkpoint because it confers Mps1 stability and activity. We identified Cdc14 as the phosphatase that dephosphorylates Hsp90 and disrupts its interaction with Mps1. This causes Mps1 degradation, thus providing a mechanism for its inactivation. Finally, Hsp90 phosphorylation sensitizes cells to its inhibitors, and elevated Mps1 levels confer renal cell carcinoma selectivity to Hsp90 drugs. Mps1 expression level can potentially serve as a predictive indicator of tumor response to Hsp90 inhibitors.


Subject(s)
Carcinoma, Renal Cell/metabolism , HSP90 Heat-Shock Proteins/metabolism , Kidney Neoplasms/metabolism , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Amino Acid Sequence , Antineoplastic Agents/pharmacology , Cell Cycle Proteins/metabolism , Enzyme Inhibitors/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Humans , Molecular Sequence Data , Phosphorylation , Protein Binding , Proteolysis , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism
13.
PLoS One ; 10(10): e0141786, 2015.
Article in English | MEDLINE | ID: mdl-26517842

ABSTRACT

The two cytosolic/nuclear isoforms of the molecular chaperone HSP90, stress-inducible HSP90α and constitutively expressed HSP90ß, fold, assemble and maintain the three-dimensional structure of numerous client proteins. Because many HSP90 clients are important in cancer, several HSP90 inhibitors have been evaluated in the clinic. However, little is known concerning possible unique isoform or conformational preferences of either individual HSP90 clients or inhibitors. In this report, we compare the relative interaction strength of both HSP90α and HSP90ß with the transcription factors HSF1 and HIF1α, the kinases ERBB2 and MET, the E3-ubiquitin ligases KEAP1 and RHOBTB2, and the HSP90 inhibitors geldanamycin and ganetespib. We observed unexpected differences in relative client and drug preferences for the two HSP90 isoforms, with HSP90α binding each client protein with greater apparent affinity compared to HSP90ß, while HSP90ß bound each inhibitor with greater relative interaction strength compared to HSP90α. Stable HSP90 interaction was associated with reduced client activity. Using a defined set of HSP90 conformational mutants, we found that some clients interact strongly with a single, ATP-stabilized HSP90 conformation, only transiently populated during the dynamic HSP90 chaperone cycle, while other clients interact equally with multiple HSP90 conformations. These data suggest different functional requirements among HSP90 clientele that, for some clients, are likely to be ATP-independent. Lastly, the two inhibitors examined, although sharing the same binding site, were differentially able to access distinct HSP90 conformational states.


Subject(s)
Benzoquinones/pharmacology , HSP90 Heat-Shock Proteins/chemistry , Lactams, Macrocyclic/pharmacology , Mutation , Protein Kinase Inhibitors/pharmacology , Triazoles/pharmacology , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Binding Sites , DNA-Binding Proteins/metabolism , GTP-Binding Proteins/metabolism , HEK293 Cells , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Heat Shock Transcription Factors , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Kelch-Like ECH-Associated Protein 1 , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, ErbB-2/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
14.
Chemistry ; 21(39): 13598-608, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26286886

ABSTRACT

Hsp90 is a molecular chaperone of pivotal importance for multiple cell pathways. ATP-regulated internal dynamics are critical for its function and current pharmacological approaches block the chaperone with ATP-competitive inhibitors. Herein, a general approach to perturb Hsp90 through design of new allosteric ligands aimed at modulating its functional dynamics is proposed. Based on the characterization of a first set of 2-phenylbenzofurans showing stimulatory effects on Hsp90 ATPase and conformational dynamics, new ligands were developed that activate Hsp90 by targeting an allosteric site, located 65 Šfrom the active site. Specifically, analysis of protein responses to first-generation activators was exploited to guide the design of novel derivatives with improved ability to stimulate ATP hydrolysis. The molecules' effects on Hsp90 enzymatic, conformational, co-chaperone and client-binding properties were characterized through biochemical, biophysical and cellular approaches. These designed probes act as allosteric activators of the chaperone and affect the viability of cancer cell lines for which proper functioning of Hsp90 is necessary.


Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphate/chemistry , Benzofurans/chemistry , Chaperonins/chemistry , HSP90 Heat-Shock Proteins/chemistry , Adenosine Triphosphatases/metabolism , Allosteric Site , Biochemical Phenomena , Cell Line, Tumor , HSP90 Heat-Shock Proteins/metabolism , Humans , Hydrolysis , Ligands , Protein Binding , Protein Conformation
15.
Gene ; 570(1): 8-16, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26071189

ABSTRACT

Heat shock protein 90α (Hsp90α), encoded by the HSP90AA1 gene, is the stress inducible isoform of the molecular chaperone Hsp90. Hsp90α is regulated differently and has different functions when compared to the constitutively expressed Hsp90ß isoform, despite high amino acid sequence identity between the two proteins. These differences are likely due to variations in nucleotide sequence within non-coding regions, which allows for specific regulation through interaction with particular transcription factors, and to subtle changes in amino acid sequence that allow for unique post-translational modifications. This article will specifically focus on the expression, function and regulation of Hsp90α.


Subject(s)
HSP90 Heat-Shock Proteins/genetics , Animals , Gene Expression , Gene Expression Regulation , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/biosynthesis , Humans , Neoplasms/genetics , Neoplasms/metabolism , Promoter Regions, Genetic , Protein Interaction Maps , Protein Processing, Post-Translational
16.
Cell Stress Chaperones ; 20(5): 729-41, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26070366

ABSTRACT

The merging of knowledge from genomics, cellular signal transduction and molecular evolution is producing new paradigms of cancer analysis. Protein kinases have long been understood to initiate and promote malignant cell growth and targeting kinases to fight cancer has been a major strategy within the pharmaceutical industry for over two decades. Despite the initial success of kinase inhibitors (KIs), the ability of cancer to evolve resistance and reprogram oncogenic signaling networks has reduced the efficacy of kinase targeting. The molecular chaperone HSP90 physically supports global kinase function while also acting as an evolutionary capacitor. The Cancer Genome Atlas (TCGA) has compiled a trove of data indicating that a large percentage of tumors overexpress or possess mutant kinases that depend on the HSP90 molecular chaperone complex. Moreover, the overexpression or mutation of parallel activators of kinase activity (PAKA) increases the number of components that promote malignancy and indirectly associate with HSP90. Therefore, targeting HSP90 is predicted to complement kinase inhibitors by inhibiting oncogenic reprogramming and cancer evolution. Based on this hypothesis, consideration should be given by both the research and clinical communities towards combining kinase inhibitors and HSP90 inhibitors (H90Ins) in combating cancer. The purpose of this perspective is to reflect on the current understanding of HSP90 and kinase biology as well as promote the exploration of potential synergistic molecular therapy combinations through the utilization of The Cancer Genome Atlas.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Protein Kinase Inhibitors/therapeutic use , Protein Kinases/metabolism , Animals , Genomics , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Signal Transduction
17.
J Chem Inf Model ; 55(3): 676-86, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25686391

ABSTRACT

The design of a single drug molecule that is able to simultaneously and specifically interact with multiple biological targets is gaining major consideration in drug discovery. However, the rational design of drugs with a desired polypharmacology profile is still a challenging task, especially when these targets are distantly related or unrelated. In this work, we present a computational approach aimed at the identification of suitable target combinations for multitarget drug design within an ensemble of biologically relevant proteins. The target selection relies on the analysis of activity annotations present in molecular databases and on ligand-based virtual screening. A few target combinations were also inspected with structure-based methods to demonstrate that the identified dual-activity compounds are able to bind target combinations characterized by remote binding site similarities. Our approach was applied to the heat shock protein 90 (Hsp90) interactome, which contains several targets of key importance in cancer. Promising target combinations were identified, providing a basis for the computational design of compounds with dual activity. The approach may be used on any ensemble of proteins of interest for which known inhibitors are available.


Subject(s)
HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Polypharmacology , Binding Sites , Databases, Chemical , Estrogen Receptor alpha/antagonists & inhibitors , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Humans , Ligands , Molecular Docking Simulation , Protein Interaction Maps , Receptor, ErbB-2/metabolism , Structure-Activity Relationship
18.
Mol Cell ; 53(2): 317-29, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24462205

ABSTRACT

The stability and activity of numerous signaling proteins in both normal and cancer cells depends on the dimeric molecular chaperone heat shock protein 90 (Hsp90). Hsp90's function is coupled to ATP binding and hydrolysis and requires a series of conformational changes that are regulated by cochaperones and numerous posttranslational modifications (PTMs). SUMOylation is one of the least-understood Hsp90 PTMs. Here, we show that asymmetric SUMOylation of a conserved lysine residue in the N domain of both yeast (K178) and human (K191) Hsp90 facilitates both recruitment of the adenosine triphosphatase (ATPase)-activating cochaperone Aha1 and, unexpectedly, the binding of Hsp90 inhibitors, suggesting that these drugs associate preferentially with Hsp90 proteins that are actively engaged in the chaperone cycle. Importantly, cellular transformation is accompanied by elevated steady-state N domain SUMOylation, and increased Hsp90 SUMOylation sensitizes yeast and mammalian cells to Hsp90 inhibitors, providing a mechanism to explain the sensitivity of cancer cells to these drugs.


Subject(s)
Adenosine Triphosphate/metabolism , Chaperonins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/physiology , Humans , Protein Structure, Tertiary , Sumoylation
19.
Cancer Res ; 73(23): 7022-33, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24121490

ABSTRACT

The proto-oncogene MET is aberrantly activated via overexpression or mutation in numerous cancers, making it a prime anticancer molecular target. However, the clinical success of MET-directed tyrosine kinase inhibitors (TKI) has been limited due, in part, to mutations in the MET kinase domain that confer therapeutic resistance. Circumventing this problem remains a key challenge to improving durable responses in patients receiving MET-targeted therapy. MET is an HSP90-dependent kinase, and in this report we show that HSP90 preferentially interacts with and stabilizes activated MET, regardless of whether the activation is ligand-dependent or is a consequence of kinase domain mutation. In contrast, many MET-TKI show a preference for the inactive form of the kinase, and activating mutations in MET can confer resistance. Combining the HSP90 inhibitor ganetespib with the MET-TKI crizotinib achieves synergistic inhibition of MET, its downstream signaling pathways, and tumor growth in both TKI-sensitive and -resistant MET-driven tumor models. These data suggest that inclusion of an HSP90 inhibitor can partially restore TKI sensitivity to previously resistant MET mutants, and they provide the foundation for clinical evaluation of this therapeutic combination in patients with MET-driven cancers.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Resistance, Neoplasm , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Pyrazoles/pharmacology , Pyridines/pharmacology , Triazoles/pharmacology , Animals , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Crizotinib , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Synergism , Female , HEK293 Cells , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Neoplasms/genetics , Neoplasms/pathology , Proto-Oncogene Mas , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/physiology , Pyrazoles/administration & dosage , Pyridines/administration & dosage , Triazoles/administration & dosage , Xenograft Model Antitumor Assays
20.
J Med Chem ; 56(21): 8280-97, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24044500

ABSTRACT

A library of 3-hydroxy-2,3-dihydropyridones was synthesized, and their activities as antiandrogens were tested in the human prostate cancer cell line LNCaP. Structure-activity relationship (SAR) studies resulted in the identification of a potent compound whose activity is comparable to that of MDV3100. Homology modeling and molecular mechanics were used to build a structural model of the androgen receptor-ligand binding domain and to investigate the structural basis of the antagonism. The model is qualitatively consistent with the observed SAR. Moreover, the enrichment plot shows that screening with the model performs significantly better than random screening. Therefore, the model probably represents a realistic conformation of the antagonist form and can be utilized for structure-based design of novel antiandrogens.


Subject(s)
Pyridones/chemical synthesis , Pyridones/pharmacology , Receptors, Androgen/metabolism , Cell Line, Tumor , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Pyridones/chemistry , Receptors, Androgen/chemistry , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...