Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
Sci Total Environ ; 704: 135454, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31837876

ABSTRACT

Organo-mineral association is one of the most important stabilization mechanisms of soil organic matter. However, few studies have been conducted to assess the retention, transformation, and transportation of colloids (1-1000 nm) and associated organic carbon (OC) in soil. Given the particularly significant role that wetland soils play in carbon storage and cycling, we quantified the dynamics of organo-mineral association within colloidal size range by conducting three consecutive 35-day redox (reduction-oxidation) oscillation experiments using a wetland soil. Molecular compositions of natural nanoparticle (NNP, 2.3-100 nm), fine colloid (100-450 nm), and particulate (450-1000 nm) fractions were measured using isotope ratio mass spectrometry (IRMS) and x-ray photoelectron spectroscopy (XPS). Results showed that NNP and fine colloids constituted up to 8.94 ± 0.50% and 22.19 ± 7.52% of bulk C concentration (2.3-1000 nm), respectively; indicating substantial contributions of these two fractions to the operationally defined "dissolved" (<450 nm) fraction. There was significant enrichment in heavier δ13C isotopes (p < 0.001) with size: NNP (-29.64 ± 0.32‰) < fine colloid (-28.81 ± 0.31‰) < particulate (-28.34 ± 0.25‰) fractions. NNP had the highest percentages of carbonyl/carboxyl C (C=O); while fine colloid and particulate fractions contained more reduced aromatic or aliphatic C (C-C, C=C, C-H). OC became more enriched (‰) in microbial-derived C (higher δ13C) with increasing particle size as well as with repeated redox oscillations. Our findings clearly demonstrate limitations of using the operationally defined "dissolved" fraction (<450 nm) to assess C cycling in ecosystems such as wetlands. Increase in colloid and OC concentrations and presence of more microbial-derived C in larger size fractions additionally imply that redox oscillations promote the formation of molecularly diverse sub-colloid sized organo-mineral associations. Being a composite unit of soil microaggregates, organic-mineral associations can thus influence the overall stability of OC in wetland soils that undergo frequent redox oscillations.

2.
J Vac Sci Technol A ; 36(5): 051507, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30078936

ABSTRACT

Analysis of the surface of thin Irganox 1010 films before and after sputtering with an argon gas-cluster ion beam was performed with AFM and XPS to determine the effect that Zalar rotation has on the chemistry and morphology of the surface. The analysis is based on the change in roughness of the surface by comparing the same location on the surface before and after sputtering. The ion beam used was an Arn+ of size n = 1000 and energy 4 keV. The XPS analysis agreed with previous results in which the ion beam did not cause measurable accumulation of damaged material. Based on the AFM results, the Irganox 1010 surface became rougher as a result of ion sputtering, and the degree of roughening was quantified, as was the sputter rate. Furthermore, Zalar rotation during ion sputtering did not have a significant effect on surface roughening, surprisingly.

3.
Geochem Trans ; 19(1): 6, 2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29441435

ABSTRACT

Minerals constitute a primary ecosystem control on organic C decomposition in soils, and therefore on greenhouse gas fluxes to the atmosphere. Secondary minerals, in particular, Fe and Al (oxyhydr)oxides-collectively referred to as "oxides" hereafter-are prominent protectors of organic C against microbial decomposition through sorption and complexation reactions. However, the impacts of Mn oxides on organic C retention and lability in soils are poorly understood. Here we show that hydrous Mn oxide (HMO), a poorly crystalline δ-MnO2, has a greater maximum sorption capacity for dissolved organic matter (DOM) derived from a deciduous forest composite Oi, Oe, and Oa horizon leachate ("O horizon leachate" hereafter) than does goethite under acidic (pH 5) conditions. Nonetheless, goethite has a stronger sorption capacity for DOM at low initial C:(Mn or Fe) molar ratios compared to HMO, probably due to ligand exchange with carboxylate groups as revealed by attenuated total reflectance-Fourier transform infrared spectroscopy. X-ray photoelectron spectroscopy and scanning transmission X-ray microscopy-near-edge X-ray absorption fine structure spectroscopy coupled with Mn mass balance calculations reveal that DOM sorption onto HMO induces partial Mn reductive dissolution and Mn reduction of the residual HMO. X-ray photoelectron spectroscopy further shows increasing Mn(II) concentrations are correlated with increasing oxidized C (C=O) content (r = 0.78, P < 0.0006) on the DOM-HMO complexes. We posit that DOM is the more probable reductant of HMO, as Mn(II)-induced HMO dissolution does not alter the Mn speciation of the residual HMO at pH 5. At a lower C loading (2 × 102 µg C m-2), DOM desorption-assessed by 0.1 M NaH2PO4 extraction-is lower for HMO than for goethite, whereas the extent of desorption is the same at a higher C loading (4 × 102 µg C m-2). No significant differences are observed in the impacts of HMO and goethite on the biodegradability of the DOM remaining in solution after DOM sorption reaches steady state. Overall, HMO shows a relatively strong capacity to sorb DOM and resist phosphate-induced desorption, but DOM-HMO complexes may be more vulnerable to reductive dissolution than DOM-goethite complexes.

4.
Appl Phys A Mater Sci Process ; 121(3): 1015-1030, 2015 Nov.
Article in English | MEDLINE | ID: mdl-27482144

ABSTRACT

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF-SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment-binder interactions. In this study, ToF-SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905-1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF-SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting's complex restoration history. ToF-SIMS's ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using µXANES, SR-µXRF, SEM-EDX, and SR-FTIR. The relatively high sensitivity offered by ToF-SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as identifying unexpected organic materials in specific paint layers.

5.
Biointerphases ; 9(1): 011003, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24739010

ABSTRACT

Neuronal process growth is guided by extrinsic environmental cues such as extracellular matrix (ECM) proteins. Recent reports have described that the growth cone extension is superior across gradients of the ECM protein laminin compared to growth across uniformly distributed laminin. In this work, the authors have prepared gradients of laminin on aligned electrospun nanofibers for use as substrates for neuronal growth. The substrates therefore presented both topographical and chemical guidance cues. Step gradients were prepared by the controlled robotic immersion of plasma-treated polycaprolactone fibers reacted with N-hydroxysuccinimide into the protein solution. The gradients were analyzed using x-ray photoelectron spectroscopy and confocal laser scanning microscopy. Gradients with a dynamic range of protein concentrations were successfully generated and neurite outgrowth was evaluated using neuronlike pheochromocytoma cell line 12 (PC12) cells. After 10 days of culture, PC12 neurite lengths varied from 32.7 ± 14.2 µm to 76.3 ± 9.1 µm across the protein concentration gradient. Neurite lengths at the highest concentration end of the gradient were significantly longer than neurite lengths observed for cells cultured on samples with uniform protein coverage. Gradients were prepared both in the fiber direction and transverse to the fiber direction. Neurites preferentially aligned with the fiber direction in both cases indicating that fiber alignment has a more dominant role in controlling neurite orientation, compared to the chemical gradient.


Subject(s)
Chromaffin Cells/drug effects , Chromaffin Cells/physiology , Intercellular Signaling Peptides and Proteins/metabolism , Laminin/metabolism , Neurites/drug effects , Neurites/physiology , Animals , Microscopy, Confocal , PC12 Cells , Photoelectron Spectroscopy , Rats
6.
Chem Sci ; 4(1): 437-443, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-25520772

ABSTRACT

Controlling the molecular topology of electrode-catalyst interfaces is a critical factor in engineering devices with specific electron transport kinetics and catalytic efficiencies. As such, the development of rational methods for the modular construction of tailorable electrode surfaces with robust molecular wires (MWs) exhibiting well-defined molecular topologies, conductivities and morphologies is critical to the evolution and implementation of electrochemical arrays for sensing and catalysis. In response to this need, we have established modular on-surface Sonogashira and Glaser cross-coupling processes to synthetically install arrays of ferrocene-capped MWs onto electrochemically functionalized surfaces. These methods are of comparable convenience and efficiency to more commonly employed Huisgen methods. Furthermore, unlike the Huisgen reaction, this new surface functionalization chemistry generates modified electrodes that do not contain unwanted ancillary metal binding sites, while allowing the bridge between the ferrocenyl moiety and electrode surface to be synthetically tailored. Electrochemical and surface analytical characterization of these platforms demonstrate that the linker topology and connectivity influences the ferrocene redox potential and the kinetics of charge transport at the interface.

7.
J Mater Sci Mater Med ; 24(1): 179-87, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23053801

ABSTRACT

The impact of mat porosity of polycaprolactone (PCL) electrospun fibers on the infiltration of neuron-like PC12 cells was evaluated using two different approaches. In the first method, bi-component aligned fiber mats were fabricated via the co-electrospinning of PCL with polyethylene oxide (PEO). Variation of the PEO flow rate, followed by selective removal of PEO from the PCL/PEO mesh, allowed for control of the porosity of the resulting scaffold. In the second method, aligned fiber mats were fabricated from various concentrations of PCL solutions to generate fibers with diameters between 0.13 ± 0.06 and 9.10 ± 4.1 µm. Of the approaches examined, the variation of PCL fiber diameter was found to be the better method for increasing the infiltration of PC12 cells, with the optimal infiltration into the ca. 1.5-mm-thick meshes observed for the mats with the largest fiber diameters, and hence largest pore sizes.


Subject(s)
Polyesters/chemistry , Tissue Scaffolds , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
8.
J Phys Condens Matter ; 24(33): 336004, 2012 Aug 22.
Article in English | MEDLINE | ID: mdl-22810351

ABSTRACT

We present magnetic properties of hollow and solid CoFe(2)O(4) nanoparticles that were obtained by annealing of Co(33)Fe(67)/CoFe(2)O(4) (core/shell) nanoparticles. Hollow nanoparticles were polycrystalline whereas the solid nanoparticles were mostly single crystal. Electronic structure studies were performed by photoemission which revealed that particles with hollow morphology have a higher degree of inversion compared to solid nanoparticles and the bulk counterpart. Electronic structure and the magnetic measurements show that particles have uncompensated spins. Quantitative comparison of saturation magnetization (M(S )), assuming bulk Néel type spin structure with cationic distribution, calculated from quantitative XPS analysis, is presented. The thickness of uncompensated spins is calculated to be significantly large for particles with hollow morphology compared to solid nanoparticles. Both morphologies show a lack of saturation up to 7 T. Moreover magnetic irreversibility exists up to 7 T of cooling fields for the entire temperature range (10-300 K). These effects are due to the large bulk anisotropy constant of CoFe(2)O(4) which is the highest among the cubic spinel ferrites. The effect of the uncompensated spins for hollow nanoparticles was investigated by cooling the sample in large fields of up to 9 T. The magnitude of horizontal shift resulting from the unidirectional anisotropy was more than three times larger than that of solid nanoparticles. As an indication signature of uncompensated spin structure, 11% vertical shift for hollow nanoparticles is observed, whereas solid nanoparticles do not show a similar shift. Deconvolution of the hysteresis response recorded at 300 K reveals the presence of a significant paramagnetic component for particles with hollow morphology which further confirms enhanced spin disorder.

9.
Anal Chem ; 84(13): 5770-7, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22702642

ABSTRACT

Thin films of conducting polymers exhibit unique chemical and physical properties that render them integral parts in microelectronics, energy storage devices, and chemical sensors. Overall, polyaniline (PAni) doped in acidic media has shown metal-like electronic conductivity, though exact physical and chemical properties are dependent on the polymer structure and dopant type. Difficulties arising from poor processability render production of doped PAni thin films particularly challenging. In this contribution, DC magnetron sputtering, a physical vapor deposition technique, is applied to the preparation of conductive thin films of PAni doped with hydrochloric acid (PAni-HCl) in an effort to circumvent issues associated with conventional thin film preparation methods. Samples manufactured by the sputtering method are analyzed along with samples prepared by conventional drop-casting. Physical characterization (atomic force microscopy, AFM) confirm the presence of PAni-HCl and show that films exhibit a reduced roughness and potentially pinhole-free coverage of the substrate. Spectroscopic evidence (UV-vis, FT-IR, and X-ray photoelectron spectroscopy (XPS)) suggests that structural changes and loss of conductivity, not uncommon during PAni processing, does occur during the preparation process. Finally, the applicability of sputtered films to gas-phase sensing of NH(3) was investigated with surface plasmon resonance (SPR) spectroscopy and compared to previous contributions. In summary, sputtered PAni-HCl films exhibit quantifiable, reversible behavior upon exposure to NH(3) with a calculated LOD (by method) approaching 0.4 ppm NH(3) in dry air.


Subject(s)
Ammonia/analysis , Aniline Compounds/chemistry , Gases/analysis , Hydrochloric Acid/chemistry , Nanostructures/chemistry , Surface Plasmon Resonance , Limit of Detection , Microscopy, Atomic Force , Photoelectron Spectroscopy , Spectrophotometry, Ultraviolet , Surface Plasmon Resonance/methods , Surface Properties
10.
ACS Appl Mater Interfaces ; 4(4): 2074-81, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22409446

ABSTRACT

The surface modification of synthetic tissue engineering scaffolds is essential to improving their hydrophilicity and cellular compatibility. Plasma treatment is an effective way to increase the hydrophilicity of a surface, but the incorporation of biomolecules is also important to control cellular adhesion and differentiation, among many other outcomes. In this work, oriented polycaprolactone (PCL) electrospun fibers were modified by air-plasma treatment, followed by the covalent attachment of laminin. The amount of protein incorporated onto the fiber surface was controlled by varying the reaction time and the protein solution concentration. The protein concentration and coverage were quantified using X-ray photoelectron spectroscopy (XPS), solid-state ultraviolet-visible spectroscopy (UV-vis) and two fluorescence-based assays. XPS results showed a nearly linear increase in protein coverage with increasing protein soaking solution concentration until a monolayer was formed. Results from XPS and the NanoOrange fluorescence assay revealed multilayer protein coverage at protein solution concentrations between 25 and 50 µg/mL, whereas the UV-vis assay demonstrated multilayer coverage at lower protein solution concentrations. The effect of protein concentration on the neurite outgrowth of neuron-like PC12 cells was evaluated, and outgrowth rates were found to be positively correlated to increasing protein concentration.


Subject(s)
Polyesters/chemistry , Proteins/analysis , Tissue Engineering/instrumentation , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Cell Adhesion , Cell Line , Cells/cytology , Cells/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Proteins/metabolism , Surface Properties
11.
Biointerphases ; 6(3): 105, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21974681

ABSTRACT

In the present study, we fabricated two-component extracellular matrix protein patterned substrates with fibronectin (FN) and laminin (LN) because of our interest in the mechanism of axonal regeneration and injury in the central and peripheral nervous systems. The authors investigated how the patterning order and method of attachment affected the spatial distribution and biological activity of the immobilized proteins. Micro-contact printing (µCP) techniques in concert with reactive surface chemistry were used to modify glass substrates with one- and two-component films of FN and LN, including micrometer-scale patterns of FN and LN. The composition and spatial distributions of both proteins on the patterned surfaces were characterized by x ray photoelectron spectroscopy, epi-fluorescence microscopy, atomic force microscopy, and time-of-flight secondary-ion mass spectrometry. The authors also characterized the biological activity of the top-most protein layer in a two-layer protein system as well as the ability of the top-most protein layer to mask the biological activity of an underlying protein layer using a fluorescence-based enzyme-linked immunosorbent assay. The order of protein deposition significantly affected the relative biological activity of the upper-most and underlying immobilized proteins. As a result of these optimization studies, maximum biological activity per surface protein was achieved by first immobilizing FN from solution, followed by µCP of LN on the FN. Addition of µCP LN films was able to mask ∼84% of the underlying FN activity, whereas µCP FN films were only able to mask ∼27% of the underlying LN activity.


Subject(s)
Adsorption , Fibronectins/metabolism , Laminin/metabolism , Neurons/physiology , Surface Properties , Cell Culture Techniques , Fibronectins/chemistry , Glass , Laminin/chemistry , Microscopy, Atomic Force , Microscopy, Fluorescence , Photoelectron Spectroscopy , Protein Binding , Spectrometry, Mass, Secondary Ion
12.
J Phys Chem B ; 115(43): 12441-7, 2011 Nov 03.
Article in English | MEDLINE | ID: mdl-21928836

ABSTRACT

Poly(methyl methacrylate) (PMMA)-polyacrylonitrile (PAN) fibers were prepared using a conventional single-nozzle electrospinning technique. The as-spun fibers exhibited core-shell morphology as verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM). AFM-phase and modulus mapping images of the fiber cross-section and X-ray photoelectron spectroscopy (XPS) analysis indicated that PAN formed the shell and PMMA formed the core material. XPS, thermogravimetric analysis (TGA), and elemental analysis were used to determine fiber compositional information. Soaking the fibers in solvent demonstrated removal of the core material, generating hollow PAN fibers.


Subject(s)
Acrylic Resins/chemistry , Nanofibers/chemistry , Polymethyl Methacrylate/chemistry , Microscopy, Atomic Force , Nanofibers/ultrastructure , Photoelectron Spectroscopy , Thermogravimetry
13.
Biointerphases ; 6(4): 200-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22239813

ABSTRACT

Neural and skeletal communication is essential for the maintenance of bone mass and transmission of pain, yet the mechanism(s) of signal transduction between these tissues is unknown. The authors established a novel system to co-culture murine long bone osteocyte-like cells (MLO-Y4) and primary murine dorsal root ganglia (DRG) neurons. Assessment of morphology and maturation marker expression on perlecan domain IV peptide (PlnDIV) and collagen type-1 (Col1) demonstrated that PlnDIV was an optimal matrix for MLO-Y4 culture. A novel matrix-specificity competition assay was developed to expose these cells to several extracellular matrix proteins such as PlnDIV, Col1, and laminin (Ln). The competition assay showed that approximately 70% of MLO-Y4 cells preferred either PlnDIV or Col1 to Ln. To co-culture MLO-Y4 and DRG, we developed patterned surfaces using micro-contact printing to create 40 µm × 1 cm alternating stripes of PlnDIV and Ln or PlnDIV and Col1. Co-culture on PlnDIV/Ln surfaces demonstrated that these matrix molecules provided unique cues for each cell type, with MLO-Y4 preferentially attaching to the PlnDIV lanes and DRG neurons to the Ln lanes. Approximately 80% of DRG were localized to Ln. Cellular processes from MLO-Y4 were closely associated with axonal extensions of DRG neurons. Approximately 57% of neuronal processes were in close proximity to nearby MLO-Y4 cells at the PlnDIV-Ln interface. The surfaces in this new assay provided a unique model system with which to study the communication between osteocyte-like cells and neurons in an in vitro environment.


Subject(s)
Coculture Techniques/methods , Neurons/cytology , Osteocytes/cytology , Peptides/pharmacology , Animals , Biomarkers/metabolism , Cell Shape/drug effects , Cells, Cultured , Collagen Type I/pharmacology , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/pharmacology , Ganglia, Spinal/cytology , Gene Expression Regulation/drug effects , Heparan Sulfate Proteoglycans/chemistry , Laminin/pharmacology , Mice , Microscopy, Confocal , Neurons/drug effects , Neurons/metabolism , Osteocytes/drug effects , Osteocytes/metabolism , Peptides/chemistry , Photoelectron Spectroscopy , Protein Structure, Tertiary , RNA, Messenger/genetics , RNA, Messenger/metabolism , Surface Properties/drug effects
14.
Biointerphases ; 5(4): 149-58, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21219036

ABSTRACT

Biomaterial bridges constructed from electrospun fibers offer a promising alternative to traditional nerve tissue regeneration substrates. Aligned and unaligned polycaprolactone (PCL) electrospun fibers were prepared and functionalized with the extracellular matrix proteins collagen and laminin using covalent and physical adsorption attachment chemistries. The effect of the protein modified and native PCL nanofiber scaffolds on cell proliferation, neurite outgrowth rate, and orientation was examined with neuronlike PC12 cells. All protein modified scaffolds showed enhanced cellular adhesion and neurite outgrowth compared to unmodified PCL scaffolds. Neurite orientation was found to be in near perfect alignment with the fiber axis for cells grown on aligned fibers, with difference angles of less than 7° from the fiber axis, regardless of the surface chemistry. The bioavailability of PCL fibers with covalently attached laminin was found to be identical to that of PCL fibers with physically adsorbed laminin, indicating that the covalent chemistry did not change the protein conformation into a less active form and the covalent attachment of protein is a suitable method for enhancing the biocompatibility of tissue engineering scaffolds.


Subject(s)
Biocompatible Materials/chemistry , Nanofibers/ultrastructure , Neurites/physiology , Tissue Culture Techniques/methods , Tissue Scaffolds , Adsorption , Analysis of Variance , Animals , Cell Differentiation , Cell Proliferation , Cell Survival , Collagen/metabolism , Electrochemical Techniques , Laminin/metabolism , Microscopy, Confocal , Microscopy, Electron, Scanning , Nanofibers/chemistry , Neurites/metabolism , PC12 Cells , Rats
15.
J Am Chem Soc ; 129(16): 5281-7, 2007 Apr 25.
Article in English | MEDLINE | ID: mdl-17397165

ABSTRACT

Herein, we describe the design and surface-binding characterization of a de novo designed peptide, JAK1, which undergoes surface-induced folding at the hydroxyapatite (HA)-solution interface. JAK1 is designed to be unstructured in buffered saline solution, yet undergo HA-induced folding that is largely governed by the periodic positioning of gamma-carboxyglutamic acid (Gla) residues within the primary sequence of the peptide. Circular dichroism (CD) spectroscopy and analytical ultracentrifugation indicate that the peptide remains unfolded and monomeric in solution under normal physiological conditions; however, CD spectroscopy indicates that in the presence of hydroxyapatite, the peptide avidly binds to the mineral surface adopting a helical structure. Adsorption isotherms indicate nearly quantitative surface coverage and Kd = 310 nM for the peptide-surface binding event. X-ray photoelectron spectroscopy (XPS) coupled with the adsorption isotherm data suggests that JAK1 binds to HA, forming a self-limiting monolayer. This study demonstrates the feasibility of using HA surfaces to trigger the intramolecular folding of designed peptides and represents the initial stages of defining the design rules that allow HA-induced peptide folding.


Subject(s)
Durapatite/chemistry , Janus Kinase 1/chemistry , Peptides/chemistry , Amino Acid Sequence , Calcium , Molecular Sequence Data , Protein Conformation , Protein Folding , Solubility , Surface Properties
16.
Biomacromolecules ; 6(6): 3388-96, 2005.
Article in English | MEDLINE | ID: mdl-16283770

ABSTRACT

New applications in regenerative biotechnology require the ability to understand and control protein-surface interactions on micrometer and submicrometer length scales. Evidence presented here shows that micropatterned amphiphilic comb polymer films exhibit a pretreatment-dependent behavior with respect to protein adsorption for the proteins fibronectin, laminin, and for serum. A micropatterned surface, consisting of protein-reactive regions, separated by comb polymer, was created and tested for protein adsorption using the surface-sensitive imaging tool TOF-SIMS. Immersion of micropatterned surfaces in solutions of fibronectin or laminin resulted in uniform protein coverage on both the comb polymer and protein-reactive regions. However, preimmersion of similarly patterned surfaces in water for 2 h prior to protein incubation was found to dramatically improve the protein-resistant properties of the comb polymer regions. These results are consistent with poly(ethylene glycol) (PEG) side chain reorientation and/or hydration and poly(methyl methacrylate) (PMMA) backbone segregation away from the interface region.


Subject(s)
Biocompatible Materials/chemistry , Biopolymers/chemistry , Macromolecular Substances/chemistry , Polymers/chemistry , Proteins/chemistry , Surface Properties , Adsorption , Fibronectins/chemistry , Glass , Ions , Microscopy, Atomic Force , Models, Chemical , Molecular Structure , Polyethylene Glycols/chemistry , Polymethyl Methacrylate/chemistry , Time Factors
17.
Langmuir ; 21(19): 8883-91, 2005 Sep 13.
Article in English | MEDLINE | ID: mdl-16142974

ABSTRACT

Surface-templated nanostructures on the highly oriented pyrolytic graphite (HOPG) basal plane were created by controlled Cs+- or Ga+)ion bombardment, followed by subsequent oxidation at high temperature, forming molecule corrals. The corrals were then used for template growth of SiOx/Si nanostructures. We demonstrate here that, for SiOx/Si nanostructures formed in controlled molecule corrals, the amount of silicon deposited on the surface is directly correlated with the corral density, making it possible to generate patterned SiOx/Si nanostructures on HOPG. Since the size, depth, position, and surface density of the nanostructures can be controlled on the HOPG, it is possible to produce surfaces with patterned or gradient functionalities for applications in fields such as biosensors, microelectronics, and biomaterials (e.g., neuron pathfinding). If desired, the SiOx structures can be reduced in size by etching in dilute HF, and further oxidation of the nanostructures is slow enough to provide plenty of time to functionalize them using ambient and solution reactions and to perform surface analysis. Organosilane monolayers on surface-templated SiOx/Si nanostructures were examined by X-ray photoelectron spectroscopy, time-of-flight secondary ion mas spectrometry, and atomic force microscopy. Silanes with long alkyl chains such as n-octadecyltrichlorosilane (C18) were found to both react on SiOx/Si nanostructures and to condense on the HOPG basal plane. Shorter-chain silanes, such as 11-bromoundicyltrimethoxysilane (C11) and 3-mercaptopropyltrimethoxysilane (C3) were found to react preferentially with SiOx/Si nanostructures, not HOPG. The SiOx/Si nanostructures were also found to be stable toward multiple chemical reactions. Selective modification of SiOx/Si nanostructures on the HOPG basal plane is thus achievable.


Subject(s)
Nanostructures/chemistry , Silicon Compounds/chemical synthesis , Silicon/chemistry , Cesium/chemistry , Gallium/chemistry , Graphite/chemistry , Molecular Structure , Oxidation-Reduction , Oxides/chemistry , Particle Size , Silanes/chemistry , Silicon Compounds/chemistry , Surface Properties , Temperature
18.
Langmuir ; 21(4): 1322-7, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15697277

ABSTRACT

We have shown that STM-tip-induced chain polymerization of 10,12-tricosadiynoic acid (TCDA) in a self-organized monolayer at the liquid-solid interface of TCDA on highly oriented pyrolytic graphite is possible. The oligomers thus produced started at the point where a voltage pulse was applied between the STM tip and the sample during a short period when the feedback condition was momentarily suspended (as it is for scanning tunneling spectroscopy). Polymerization probabilities depended upon the length of the applied voltage pulse and were generally higher for longer pulse widths in the 10-ms to 100-micros time scales, approaching unit probability for the former and decreasing quickly to a few tens of percent for the latter. The polymerization could be confined to certain nanometer-sized areas by using "molecule corrals,"and polymerization appeared to be governed by topochemical constraints. Polymerization across domain boundaries, or over molecule corral edges, was never observed in over approximately 150 observations. Due to the constant supply of nonpolymerized molecules from the covering solution, a dynamic exchange between molecules on the surface and in the solution was possible. This exchange occurred on a time scale that was comparable to the image acquisition time (approximately 10(1) s), and appeared to depend weakly upon the length of the desorbing oligomer. The desorption process was probably also influenced by interactions with the STM tip.

19.
Biomaterials ; 26(1): 47-61, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15193880

ABSTRACT

Study of axonal growth and ligand-receptor interactions requires specificity and careful characterization of the biomaterial substrates to which the neurons bind. It would be impossible to predict the effects of important variables such as composition, surface density, spatial distribution, and conformation of the ligands on axonal growth of a neuron without highly specific surface characterization. Here, we compare two methods of surface modification (hereafter referred to as "Heterobifunctional Crosslinker" and "Pluronics" methods) used for immobilization of fibronectin (FN) and FN-derived, RGD-containing peptides to the substrates. We also characterized their performance in neurite outgrowth experiments. Various surface analytical techniques such as contact angle measurement, XPS, and time-of-flight secondary ion mass spectrometry (TOF-SIMS) were used for the analysis of the substrates at each step of the two different chemistries involved. FN-patterned surfaces were created by micro-contact printing methods and confirmed by imaging TOF-SIMS, and AFM techniques. After immobilization of FN and/or FN-derived RGD-containing peptide, including the formation of micron-scale patterns of FN, the modified surfaces were plated with neurons from postnatal rat dorsal root ganglia (DRG) and incubated in serum-free medium. Both the peptide- and/or protein-modified substrates supported significantly greater neurite outgrowth than controls, and outgrowth on both substrate chemistries was inhibited by the addition of soluble RGD peptide. Patterned FN surfaces were successful in spatially controlling the neuron attachment and outgrowth.


Subject(s)
Cell Culture Techniques/methods , Coated Materials, Biocompatible/chemical synthesis , Crystallization/methods , Fibronectins/chemistry , Neurites/physiology , Neurites/ultrastructure , Oligopeptides/chemistry , Adsorption , Animals , Animals, Newborn , Cell Proliferation/drug effects , Cells, Cultured , Cells, Immobilized/drug effects , Cells, Immobilized/physiology , Cells, Immobilized/ultrastructure , Cross-Linking Reagents/chemistry , Fibronectins/pharmacology , Materials Testing , Neurites/drug effects , Oligopeptides/pharmacology , Posterior Horn Cells/drug effects , Posterior Horn Cells/growth & development , Posterior Horn Cells/ultrastructure , Protein Binding , Rats , Tissue Engineering
20.
Langmuir ; 20(19): 8279-86, 2004 Sep 14.
Article in English | MEDLINE | ID: mdl-15350103

ABSTRACT

A novel technique for the quantitative observation of cell migration along linear gradient substrates functionalized with adhesive proteins is presented. Gradients of the cell adhesion molecule fibronectin are generated by the cross diffusion of functionalizable alkanethiols on gold and characterized by X-ray photoelectron spectroscopy and surface plasmon resonance. Two distinct migration assays are described that characterize the movement of either sparsely populated noncontacting cells or a confluent monolayer of cells into free space. The drift speed of bovine aortic endothelial cells is measured and shown to increase along a fibronectin gradient when compared to a uniform control substrate using both assays. The results of these experiments establish reproducible conditions for studies of cell migration on gradients of surface-bound ligands.


Subject(s)
Cell Movement/physiology , Endothelial Cells/chemistry , Fibronectins/chemistry , Animals , Cattle , Cells, Cultured , Endothelial Cells/cytology , Pilot Projects , Spectrometry, X-Ray Emission , Surface Plasmon Resonance , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL