Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Cereb Cortex ; 33(12): 7454-7467, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36977636

ABSTRACT

The Phospholipid Phosphatase Related 4 gene (PLPPR4,  *607813) encodes the Plasticity-Related-Gene-1 (PRG-1) protein. This cerebral synaptic transmembrane-protein modulates cortical excitatory transmission on glutamatergic neurons. In mice, homozygous Prg-1 deficiency causes juvenile epilepsy. Its epileptogenic potential in humans was unknown. Thus, we screened 18 patients with infantile epileptic spasms syndrome (IESS) and 98 patients with benign familial neonatal/infantile seizures (BFNS/BFIS) for the presence of PLPPR4 variants. A girl with IESS had inherited a PLPPR4-mutation (c.896C > G, NM_014839; p.T299S) from her father and an SCN1A-mutation from her mother (c.1622A > G, NM_006920; p.N541S). The PLPPR4-mutation was located in the third extracellular lysophosphatidic acid-interacting domain and in-utero electroporation (IUE) of the Prg-1p.T300S construct into neurons of Prg-1 knockout embryos demonstrated its inability to rescue the electrophysiological knockout phenotype. Electrophysiology on the recombinant SCN1Ap.N541S channel revealed partial loss-of-function. Another PLPPR4 variant (c.1034C > G, NM_014839; p.R345T) that was shown to result in a loss-of-function aggravated a BFNS/BFIS phenotype and also failed to suppress glutamatergic neurotransmission after IUE. The aggravating effect of Plppr4-haploinsufficiency on epileptogenesis was further verified using the kainate-model of epilepsy: double heterozygous Plppr4-/+|Scn1awt|p.R1648H mice exhibited higher seizure susceptibility than either wild-type, Plppr4-/+, or Scn1awt|p.R1648H littermates. Our study shows that a heterozygous PLPPR4 loss-of-function mutation may have a modifying effect on BFNS/BFIS and on SCN1A-related epilepsy in mice and humans.


Subject(s)
Epilepsy , Seizures , Animals , Female , Humans , Mice , Epilepsy/metabolism , Hippocampus/metabolism , Mutation/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Phenotype , Seizures/genetics , Seizures/metabolism
2.
Physiol Rev ; 102(2): 653-688, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34254836

ABSTRACT

The hippocampal formation is critically involved in learning and memory and contains a large proportion of neurons encoding aspects of the organism's spatial surroundings. In the medial entorhinal cortex (MEC), this includes grid cells with their distinctive hexagonal firing fields as well as a host of other functionally defined cell types including head direction cells, speed cells, border cells, and object-vector cells. Such spatial coding emerges from the processing of external inputs by local microcircuits. However, it remains unclear exactly how local microcircuits and their dynamics within the MEC contribute to spatial discharge patterns. In this review we focus on recent investigations of intrinsic MEC connectivity, which have started to describe and quantify both excitatory and inhibitory wiring in the superficial layers of the MEC. Although the picture is far from complete, it appears that these layers contain robust recurrent connectivity that could sustain the attractor dynamics posited to underlie grid pattern formation. These findings pave the way to a deeper understanding of the mechanisms underlying spatial navigation and memory.


Subject(s)
Entorhinal Cortex/blood supply , Entorhinal Cortex/physiology , Hippocampus/blood supply , Pyramidal Cells/physiology , Action Potentials/physiology , Animals , Humans , Learning/physiology , Neurons/physiology
3.
Elife ; 102021 03 31.
Article in English | MEDLINE | ID: mdl-33789079

ABSTRACT

Serotonin (5-HT) is one of the major neuromodulators present in the mammalian brain and has been shown to play a role in multiple physiological processes. The mechanisms by which 5-HT modulates cortical network activity, however, are not yet fully understood. We investigated the effects of 5-HT on slow oscillations (SOs), a synchronized cortical network activity universally present across species. SOs are observed during anesthesia and are considered to be the default cortical activity pattern. We discovered that (±)3,4-methylenedioxymethamphetamine (MDMA) and fenfluramine, two potent 5-HT releasers, inhibit SOs within the entorhinal cortex (EC) in anesthetized mice. Combining opto- and pharmacogenetic manipulations with in vitro electrophysiological recordings, we uncovered that somatostatin-expressing (Sst) interneurons activated by the 5-HT2A receptor (5-HT2AR) play an important role in the suppression of SOs. Since 5-HT2AR signaling is involved in the etiology of different psychiatric disorders and mediates the psychological effects of many psychoactive serotonergic drugs, we propose that the newly discovered link between Sst interneurons and 5-HT will contribute to our understanding of these complex topics.


Subject(s)
Entorhinal Cortex/physiology , Interneurons/physiology , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin/metabolism , Animals , Mice
4.
eNeuro ; 8(1)2021.
Article in English | MEDLINE | ID: mdl-33531369

ABSTRACT

The medial entorhinal cortex (mEC) shows a high degree of spatial tuning, predominantly grid cell activity, which is reliant on robust, dynamic inhibition provided by local interneurons (INs). In fact, feedback inhibitory microcircuits involving fast-spiking parvalbumin (PV) basket cells (BCs) are believed to contribute dominantly to the emergence of grid cell firing in principal cells (PrCs). However, the strength of PV BC-mediated inhibition onto PrCs is not uniform in this region, but high in the dorsal and weak in the ventral mEC. This is in good correlation with divergent grid field sizes, but the underlying morphologic and physiological mechanisms remain unknown. In this study, we examined PV BCs in layer (L)2/3 of the mEC characterizing their intrinsic physiology, morphology and synaptic connectivity in the juvenile rat. We show that while intrinsic physiology and morphology are broadly similar over the dorsoventral axis, PV BCs form more connections onto local PrCs in the dorsal mEC, independent of target cell type. In turn, the major PrC subtypes, pyramidal cell (PC) and stellate cell (SC), form connections onto PV BCs with lower, but equal probability. These data thus identify inhibitory connectivity as source of the gradient of inhibition, plausibly explaining divergent grid field formation along this dorsoventral axis of the mEC.


Subject(s)
Entorhinal Cortex , Parvalbumins , Action Potentials , Animals , Entorhinal Cortex/metabolism , Feedback , Interneurons/metabolism , Parvalbumins/metabolism , Pyramidal Cells/metabolism , Rats
5.
Cell Rep ; 33(10): 108470, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33296656

ABSTRACT

Up-down states (UDS) are synchronous cortical events of neuronal activity during non-REM sleep. The medial entorhinal cortex (MEC) exhibits robust UDS during natural sleep and under anesthesia. However, little is known about the generation and propagation of UDS-related activity in the MEC. Here, we dissect the circuitry underlying UDS generation and propagation across layers in the MEC using both in vivo and in vitro approaches. We provide evidence that layer 3 (L3) MEC is crucial in the generation and maintenance of UDS in the MEC. Furthermore, we find that the two sublayers of the L5 MEC participate differentially during UDS. Our findings show that L5b, which receives hippocampal output, is strongly innervated by UDS activity originating in L3 MEC. Our data suggest that L5b acts as a coincidence detector during information transfer between the hippocampus and the cortex and thereby plays an important role in memory encoding and consolidation.


Subject(s)
Entorhinal Cortex/physiology , Sleep Stages/physiology , Sleep/physiology , Action Potentials/physiology , Animals , Brain/physiology , Entorhinal Cortex/metabolism , Female , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Nerve Net/physiology , Neurons/physiology , Pyramidal Cells/metabolism , Pyramidal Cells/physiology
6.
Sci Rep ; 10(1): 16557, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024184

ABSTRACT

Synaptic transmission and plasticity in the hippocampus are integral factors in learning and memory. While there has been intense investigation of these critical mechanisms in the brain of rodents, we lack a broader understanding of the generality of these processes across species. We investigated one of the smallest animals with conserved hippocampal macroanatomy-the Etruscan shrew, and found that while synaptic properties and plasticity in CA1 Schaffer collateral synapses were similar to mice, CA3 mossy fiber synapses showed striking differences in synaptic plasticity between shrews and mice. Shrew mossy fibers have lower long term plasticity compared to mice. Short term plasticity and the expression of a key protein involved in it, synaptotagmin 7 were also markedly lower at the mossy fibers in shrews than in mice. We also observed similar lower expression of synaptotagmin 7 in the mossy fibers of bats that are evolutionarily closer to shrews than mice. Species specific differences in synaptic plasticity and the key molecules regulating it, highlight the evolutionary divergence of neuronal circuit functions.


Subject(s)
Hippocampus/physiology , Neuronal Plasticity/genetics , Neuronal Plasticity/physiology , Synaptic Transmission/genetics , Synaptic Transmission/physiology , Animals , Chiroptera , Gene Expression , Hippocampus/anatomy & histology , Learning/physiology , Memory/physiology , Mice , Neural Pathways/physiology , Shrews , Species Specificity , Synaptotagmins/genetics , Synaptotagmins/metabolism , Synaptotagmins/physiology
7.
Nat Commun ; 11(1): 3472, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32636375

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Front Syst Neurosci ; 14: 22, 2020.
Article in English | MEDLINE | ID: mdl-32457582

ABSTRACT

In the course of a day, brain states fluctuate, from conscious awake information-acquiring states to sleep states, during which previously acquired information is further processed and stored as memories. One hypothesis is that memories are consolidated and stored during "offline" states such as sleep, a process thought to involve transfer of information from the hippocampus to other cortical areas. Up and Down states (UDS), patterns of activity that occur under anesthesia and sleep states, are likely to play a role in this process, although the nature of this role remains unclear. Here we review what is currently known about these mechanisms in three anatomically distinct but interconnected cortical areas: somatosensory cortex, entorhinal cortex, and the hippocampus. In doing so, we consider the role of this activity in the coordination of "replay" during sleep states, particularly during hippocampal sharp-wave ripples. We conclude that understanding the generation and propagation of UDS may provide key insights into the cortico-hippocampal dialogue linking archi- and neocortical areas during memory formation.

9.
Nat Commun ; 11(1): 1947, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32327634

ABSTRACT

Bouts of high frequency activity known as sharp wave ripples (SPW-Rs) facilitate communication between the hippocampus and neocortex. However, the paths and mechanisms by which SPW-Rs broadcast their content are not well understood. Due to its anatomical positioning, the granular retrosplenial cortex (gRSC) may be a bridge for this hippocampo-cortical dialogue. Using silicon probe recordings in awake, head-fixed mice, we show the existence of SPW-R analogues in gRSC and demonstrate their coupling to hippocampal SPW-Rs. gRSC neurons reliably distinguished different subclasses of hippocampal SPW-Rs according to ensemble activity patterns in CA1. We demonstrate that this coupling is brain state-dependent, and delineate a topographically-organized anatomical pathway via VGlut2-expressing, bursty neurons in the subiculum. Optogenetic stimulation or inhibition of bursty subicular cells induced or reduced responses in superficial gRSC, respectively. These results identify a specific path and underlying mechanisms by which the hippocampus can convey neuronal content to the neocortex during SPW-Rs.


Subject(s)
Brain Waves/physiology , Hippocampus/physiology , Neocortex/physiology , Animals , CA1 Region, Hippocampal/physiology , Mice , Mice, Transgenic , Neural Pathways/physiology , Neurons/metabolism , Neurons/physiology , Synaptic Transmission , Vesicular Glutamate Transport Protein 2/genetics , Vesicular Glutamate Transport Protein 2/metabolism , Wakefulness/physiology
10.
Elife ; 82019 09 19.
Article in English | MEDLINE | ID: mdl-31535974

ABSTRACT

All synapses require fusion-competent vesicles and coordinated Ca2+-secretion coupling for neurotransmission, yet functional and anatomical properties are diverse across different synapse types. We show that the presynaptic protein RIM-BP2 has diversified functions in neurotransmitter release at different central murine synapses and thus contributes to synaptic diversity. At hippocampal pyramidal CA3-CA1 synapses, RIM-BP2 loss has a mild effect on neurotransmitter release, by only regulating Ca2+-secretion coupling. However, at hippocampal mossy fiber synapses, RIM-BP2 has a substantial impact on neurotransmitter release by promoting vesicle docking/priming and vesicular release probability via stabilization of Munc13-1 at the active zone. We suggest that differences in the active zone organization may dictate the role a protein plays in synaptic transmission and that differences in active zone architecture is a major determinant factor in the functional diversity of synapses.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Mossy Fibers, Hippocampal/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Synaptic Vesicles/metabolism , Animals , Mice , Neurotransmitter Agents/metabolism
11.
Curr Biol ; 29(4): 605-615.e6, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30744972

ABSTRACT

Female mammals experience cyclical changes in sexual receptivity known as the estrus cycle. Little is known about how estrus affects the cortex, although alterations in sensation, cognition and the cyclical occurrence of epilepsy suggest brain-wide processing changes. We performed in vivo juxtacellular and whole-cell recordings in somatosensory cortex of female rats and found that the estrus cycle potently altered cortical inhibition. Fast-spiking interneurons were strongly activated with social facial touch and varied their ongoing activity with the estrus cycle and estradiol in ovariectomized females, while regular-spiking excitatory neurons did not change. In situ hybridization for estrogen receptor ß (Esr2) showed co-localization with parvalbumin-positive (PV+) interneurons in deep cortical layers, mirroring the laminar distribution of our physiological findings. The fraction of neurons positive for estrogen receptor ß (Esr2) and PV co-localization (Esr2+PV+) in cortical layer V was increased in proestrus. In vivo and in vitro experiments confirmed that estrogen acts locally to increase fast-spiking interneuron excitability through an estrogen-receptor-ß-dependent mechanism.


Subject(s)
Estrous Cycle/physiology , Interneurons/physiology , Neural Inhibition/physiology , Somatosensory Cortex/physiology , Touch Perception/physiology , Animals , Female , Ovariectomy , Parvalbumins/metabolism , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Rats, Wistar
12.
Nat Commun ; 9(1): 4611, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30397200

ABSTRACT

Optogenetics enables manipulation of biological processes with light at high spatio-temporal resolution to control the behavior of cells, networks, or even whole animals. In contrast to the performance of excitatory rhodopsins, the effectiveness of inhibitory optogenetic tools is still insufficient. Here we report a two-component optical silencer system comprising photoactivated adenylyl cyclases (PACs) and the small cyclic nucleotide-gated potassium channel SthK. Activation of this 'PAC-K' silencer by brief pulses of low-intensity blue light causes robust and reversible silencing of cardiomyocyte excitation and neuronal firing. In vivo expression of PAC-K in mouse and zebrafish neurons is well tolerated, where blue light inhibits neuronal activity and blocks motor responses. In combination with red-light absorbing channelrhodopsins, the distinct action spectra of PACs allow independent bimodal control of neuronal activity. PAC-K represents a reliable optogenetic silencer with intrinsic amplification for sustained potassium-mediated hyperpolarization, conferring high operational light sensitivity to the cells of interest.


Subject(s)
Optogenetics/methods , Potassium Channels/genetics , Potassium Channels/metabolism , Potassium Channels/radiation effects , Silencer Elements, Transcriptional , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/radiation effects , Animals , Animals, Genetically Modified , Channelrhodopsins/radiation effects , Gene Expression/genetics , Gene Expression/radiation effects , HEK293 Cells , Humans , Light , Mice , Models, Animal , Myocytes, Cardiac/metabolism , Neurons/metabolism , Neurons/radiation effects , Rhodopsin/pharmacology , Zebrafish
13.
Front Cell Neurosci ; 12: 337, 2018.
Article in English | MEDLINE | ID: mdl-30333731

ABSTRACT

The subiculum is the gatekeeper between the hippocampus and cortical areas. Yet, the lack of a pyramidal cell-specific marker gene has made the analysis of the subicular area very difficult. Here we report that the vesicular-glutamate transporter 2 (VGLUT2) functions as a specific marker gene for subicular burst-firing neurons, and demonstrate that VGLUT2-Cre mice allow for Channelrhodopsin-2 (ChR2)-assisted connectivity analysis.

14.
EMBO Rep ; 19(4)2018 04.
Article in English | MEDLINE | ID: mdl-29440124

ABSTRACT

SORCS1 and SORCS3 are two related sorting receptors expressed in neurons of the arcuate nucleus of the hypothalamus. Using mouse models with individual or dual receptor deficiencies, we document a previously unknown function of these receptors in central control of metabolism. Specifically, SORCS1 and SORCS3 act as intracellular trafficking receptors for tropomyosin-related kinase B to attenuate signaling by brain-derived neurotrophic factor, a potent regulator of energy homeostasis. Loss of the joint action of SORCS1 and SORCS3 in mutant mice results in excessive production of the orexigenic neuropeptide agouti-related peptide and in a state of chronic energy excess characterized by enhanced food intake, decreased locomotor activity, diminished usage of lipids as metabolic fuel, and increased adiposity, albeit at overall reduced body weight. Our findings highlight a novel concept in regulation of the melanocortin system and the role played by trafficking receptors SORCS1 and SORCS3 in this process.


Subject(s)
Energy Metabolism/genetics , Nerve Tissue Proteins/genetics , Receptors, Cell Surface/genetics , Adiposity/genetics , Age Factors , Animals , Body Composition/genetics , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Gene Expression , Genes, Reporter , Glucose/metabolism , Homeostasis , Hypothalamus/metabolism , Mice , Mice, Knockout , Models, Biological , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Receptors, Cell Surface/metabolism
15.
Cell Rep ; 19(6): 1110-1116, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28494861

ABSTRACT

The distinctive firing pattern of grid cells in the medial entorhinal cortex (MEC) supports its role in the representation of space. It is widely believed that the hexagonal firing field of grid cells emerges from neural dynamics that depend on the local microcircuitry. However, local networks within the MEC are still not sufficiently characterized. Here, applying up to eight simultaneous whole-cell recordings in acute brain slices, we demonstrate the existence of unitary excitatory connections between principal neurons in the superficial layers of the MEC. In particular, we find prevalent feed-forward excitation from pyramidal neurons in layer III and layer II onto stellate cells in layer II, which might contribute to the generation or the inheritance of grid cell patterns.


Subject(s)
Entorhinal Cortex/physiology , Excitatory Postsynaptic Potentials , Animals , Entorhinal Cortex/cytology , Female , Male , Nerve Net , Pyramidal Cells/physiology , Rats , Rats, Wistar
16.
Front Syst Neurosci ; 10: 83, 2016.
Article in English | MEDLINE | ID: mdl-27833535

ABSTRACT

The entorhinal cortices in the temporal lobe of the brain are key structures relaying memory related information between the neocortex and the hippocampus. The medial entorhinal cortex (MEC) routes spatial information, whereas the lateral entorhinal cortex (LEC) routes predominantly olfactory information to the hippocampus. Gamma oscillations are known to coordinate information transfer between brain regions by precisely timing population activity of neuronal ensembles. Here, we studied the organization of in vitro gamma oscillations in the MEC and LEC of the transgenic (tg) amyloid precursor protein (APP)-presenilin 1 (PS1) mouse model of Alzheimer's Disease (AD) at 4-5 months of age. In vitro gamma oscillations using the kainate model peaked between 30-50 Hz and therefore we analyzed the oscillatory properties in the 20-60 Hz range. Our results indicate that the LEC shows clear alterations in frequency and power of gamma oscillations at an early stage of AD as compared to the MEC. The gamma-frequency oscillation slows down in the LEC and also the gamma power in dorsal LEC is decreased as early as 4-5 months in the tg APP-PS1 mice. The results of this study suggest that the timing of olfactory inputs from LEC to the hippocampus might be affected at an early stage of AD, resulting in a possible erroneous integration of the information carried by the two input pathways to the hippocampal subfields.

17.
J Neurosci ; 35(36): 12346-54, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26354904

ABSTRACT

Layer 3 of the medial entorhinal cortex is a major gateway from the neocortex to the hippocampus. Here we addressed structure-function relationships in medial entorhinal cortex layer 3 by combining anatomical analysis with juxtacellular identification of single neurons in freely behaving rats. Anatomically, layer 3 appears as a relatively homogeneous cell sheet. Dual-retrograde neuronal tracing experiments indicate a large overlap between layer 3 pyramidal populations, which project to ipsilateral hippocampus, and the contralateral medial entorhinal cortex. These cells were intermingled within layer 3, and had similar morphological and intrinsic electrophysiological properties. Dendritic trees of layer 3 neurons largely avoided the calbindin-positive patches in layer 2. Identification of layer 3 neurons during spatial exploration (n = 17) and extracellular recordings (n = 52) pointed to homogeneous spatial discharge patterns. Layer 3 neurons showed only weak spiking theta rhythmicity and sparse head-direction selectivity. A majority of cells (50 of 69) showed no significant spatial modulation. All of the ∼28% of neurons that carried significant amounts of spatial information (19 of 69) discharged in irregular spatial patterns. Thus, layer 3 spatiotemporal firing properties are remarkably different from those of layer 2, where theta rhythmicity is prominent and spatially modulated cells often discharge in grid or border patterns. Significance statement: Neurons within the superficial layers of the medial entorhinal cortex (MEC) often discharge in border, head-direction, and theta-modulated grid patterns. It is still largely unknown how defined discharge patterns relate to cellular diversity in the superficial layers of the MEC. In the present study, we addressed this issue by combining anatomical analysis with juxtacellular identification of single layer 3 neurons in freely behaving rats. We provide evidence that the anatomical organization and spatiotemporal firing properties of layer 3 neurons are remarkably different from those in layer 2. Specifically, most layer 3 neurons discharged in spatially irregular firing patterns, with weak theta-modulation and head-directional selectivity. This work thus poses constraints on the spatiotemporal patterns reaching downstream targets, like the hippocampus.


Subject(s)
Action Potentials , Entorhinal Cortex/physiology , Pyramidal Cells/physiology , Animals , Calbindins/genetics , Calbindins/metabolism , Entorhinal Cortex/cytology , Pyramidal Cells/metabolism , Rats , Rats, Wistar , Theta Rhythm
18.
Neuron ; 79(6): 1197-207, 2013 Sep 18.
Article in English | MEDLINE | ID: mdl-24050405

ABSTRACT

Local inhibitory microcircuits in the medial entorhinal cortex (MEC) and their role in network activity are little investigated. Using a combination of electrophysiological, optical, and morphological circuit analysis tools, we find that layer II stellate cells are embedded in a dense local inhibitory microcircuit. Specifically, we report a gradient of inhibitory inputs along the dorsoventral axis of the MEC, with the majority of this local inhibition arising from parvalbumin positive (PV+) interneurons. Finally, the gradient of PV+ fibers is accompanied by a gradient in the power of extracellular network oscillations in the gamma range, measured both in vitro and in vivo. The reported differences in the inhibitory microcircuitry in layer II of the MEC may therefore have a profound functional impact on the computational working principles at different locations of the entorhinal network and influence the input pathways to the hippocampus.


Subject(s)
Entorhinal Cortex/cytology , Inhibitory Postsynaptic Potentials/physiology , Interneurons/physiology , Nerve Net/physiology , Neural Inhibition/physiology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Animals, Newborn , Electric Stimulation , Evoked Potentials/physiology , Glutamic Acid/pharmacology , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Interneurons/drug effects , Lysine/analogs & derivatives , Lysine/metabolism , Nerve Net/drug effects , Neural Inhibition/drug effects , Parvalbumins/metabolism , Patch-Clamp Techniques , Peptides/metabolism , Polymers , Rats , Rats, Wistar , Statistics, Nonparametric , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
19.
J Neurosci ; 32(49): 17620-31, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23223285

ABSTRACT

The medial entorhinal cortex (MEC), presubiculum (PrS), and parasubiculum (PaS) are interconnected components of the hippocampal-parahippocampal spatial-representation system. Principal cells in all layers of MEC show signs of directional tuning, overt in head direction cells present in all layers except for layer II, and covert in grid cells, which are the major spatially modulated cell type in layer II. Directional information likely originates in the head direction-vestibular system and PrS and PaS are thought to provide this information to MEC. Efferents from PaS and PrS show a selective laminar terminal distribution in MEC superficial layers II and III, respectively. We hypothesized that this anatomically determined laminar distribution does not preclude monosynaptic interaction with neurons located in deeper layers of MEC in view of the extensive apical dendrites from deeper cells reaching layers II and III. This hypothesis was tested in the rat using tilted in vitro slices in which origins and terminations of PrS and PaS fibers were maintained, as assessed using anterograde anatomical tracing. Based on voltage-sensitive dye imaging, multipatch single-cell recordings, and scanning photostimulation of caged glutamate, we report first that principal neurons in all layers of MEC receive convergent monosynaptic inputs from PrS and PaS and second, that elicited responses show layer-specific decay times and frequency-dependent facilitation. These results indicate that regardless of their selective laminar terminal distribution, PrS and PaS inputs may monosynaptically convey directional information to principal neurons in all layers of MEC through synapses on their extensive dendritic arbors.


Subject(s)
Entorhinal Cortex/physiology , Hippocampus/physiology , Neural Pathways/physiology , Animals , Entorhinal Cortex/anatomy & histology , Excitatory Postsynaptic Potentials/physiology , Female , Hippocampus/anatomy & histology , Male , Neural Pathways/anatomy & histology , Neuroanatomical Tract-Tracing Techniques/methods , Neurons/physiology , Rats , Rats, Sprague-Dawley , Synaptic Transmission/physiology
20.
Hippocampus ; 22(1): 57-68, 2012 Jan.
Article in English | MEDLINE | ID: mdl-20848601

ABSTRACT

CA3 pyramidal cells receive three main excitatory inputs: the first one is the mossy fiber input, synapsing mainly on the proximal apical dendrites. Second, entorhinal cortex cells form excitatory connections with CA3 pyramidal cells via the perforant path in the stratum lacunosum moleculare. The third input involves the ipsi-and contralateral connections, termed the associational/commissural (A/C) pathway terminating in the stratum radiatum of CA3, thus forming a feedback loop within this region. Since this excitatory recurrent synapse makes the CA3 region extremely prone to seizure development, understanding the regulation of synaptic strength of this connection is of crucial interest. Several studies suggest that kainate receptors (KAR) play a role in the regulation of synaptic strength. Our aim was to characterize the influence of KAR on A/C synaptic transmission: application of ATPA, a selective agonist of the GluK1 KAR, depressed the amplitude fEPSP without affecting the size of the fiber volley. Blockade of GABA receptors had no influence on this effect, arguing against the influence of interneuronal KARs. Pharmacological and genetic deletion studies could show that this effect was selectively due to GluK1 receptor activation. Several lines of evidence, such as PPF changes, coefficient of variance-analysis and glutamate uncaging experiments strongly argue for a presynaptic locus of suppression. This is accompanied by an ATPA-mediated reduction in Ca(2+) influx at excitatory synaptic terminals, which is most likely mediated by a G-Protein dependent mechanism, as suggested by application of pertussis toxin. Finally, analysis of miniature EPSCs in the presence and absence of extracellular Ca(2+) suggest that presynaptic KAR can also reduce transmitter release downstream and therefore independent of Ca(2+) influx.


Subject(s)
CA3 Region, Hippocampal/physiology , Calcium Signaling/physiology , Neurotransmitter Agents/metabolism , Presynaptic Terminals/physiology , Receptors, Kainic Acid/physiology , Synaptic Transmission/physiology , Animals , CA3 Region, Hippocampal/cytology , CA3 Region, Hippocampal/metabolism , Calcium Signaling/drug effects , Mice , Mice, Knockout , Organ Culture Techniques/methods , Presynaptic Terminals/drug effects , Presynaptic Terminals/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Kainic Acid/agonists , Receptors, Kainic Acid/deficiency , Synaptic Transmission/drug effects , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL