Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(1)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36671686

ABSTRACT

Owing to the demand for the consumption of healthy extrudates, this study explored the infusion of neera (coconut inflorescence sap) honey in rice flour, corn flour and coconut milk residue blend-based extrudates. Neera honey, the concentrated coconut inflorescence sap, has numerous nutrients and a natural source of essential vitamins. Hence, the potential of neera honey as a biofortifying compound for the production of healthy extrudates was investigated. The rice and corn based extrudates supplemented with different concentration of neera honey have been prepared until the mix reaches 16 and 20% (w.b.) of feed moisture. Effect of addition of neera honey on the physical properties (expansion ratio, bulk density, specific length), functional properties (water absorption, water solubility, oil absorption), biochemical properties (total carbohydrates, total sugar, reducing sugar, phenolics, flavonoids, antioxidants), color parameters(L*, a*, b*), proximate compositions (moisture content, ash, protein, fat) and mineral profile of extrudates were recorded. Results suggest that addition of neera honey had a significant (p ˂ 0.05) impact on all the physico-chemical parameters evaluated. Incorporation of neera honey (feed moisture -20%) resulted in extrudates with less expansion, high bulk density and specific length, having high sugar, protein, phenolics, vitamin C and antioxidant activity. The combination of 60% rice flour + 25% corn flour +15% coconut milk residue samples infused with neera honey upto 16% feed moisture was found suitable for the preparation of nutritious extrudates based on functional characterization and minerals evaluation.

2.
Front Nutr ; 9: 977655, 2022.
Article in English | MEDLINE | ID: mdl-36211480

ABSTRACT

The potential of bio-preservatives, namely, nisin, natamycin, and polylysine, as viable alternatives to chemical preservatives for storage of tender coconut water (TCW) during refrigerated storage (5 ± 2°C) was explored. Bio-preservative treatments were carried out after optimized heat treatment (85°C for 5 min) of TCW to establish its storage characteristics. Various concentrations (up to 125 ppm) of bio-preservatives were used for the preservation, and quality parameters of resultant TCW were assessed based on physicochemical characteristics and Food and Agriculture Organization (FAO) guidelines and statistical analysis applied. Analysis of variance (ANOVA) and post-hoc test revealed that pH and overall acceptability (OA) are the major governing factors that determine spoilage of TCW (p < 0.05). Overall, the polylysine combination was found to be most effective in ensuring quality retention of TCW. It was concluded that pasteurized TCW shelf life could be extended up to 20 days using bio-preservatives.

3.
J Food Sci Technol ; 59(7): 2605-2616, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35734113

ABSTRACT

The investigation was aimed to understand the effect of coconut milk, tender coconut pulp, tender coconut water and coconut sugar on the qualitative attributes of ice cream. Five ice cream formulations were laid out to substitute the major ingredients of ice cream such as, dairy milk and butter with coconut milk, skim milk powder with tender coconut pulp, refined sugar with coconut sugar and potable water with tender coconut water. Two of the formulations were exclusively non-dairy, third one was the standard dairy ice cream, fourth formulation was with the inclusion of coconut sugar in the standard ice cream and the fifth one was standard ice cream with tender coconut and coconut sugar. Proximate composition of the raw materials revealed that coconut milk, tender coconut pulp and coconut sugar can contribute to the solids-non-fat content in ice cream. Significant effect (p< 0.01) was observed on physico-chemical qualities of the mix and ice cream. Total solids, density and total soluble solids of the ice cream mixes were positively correlated. Density, one of the key physical parameters was ranged from 0.98 to 1.13 g/ cm3. Though coconut milk is acidic, the percent titratable values were within the limit. Non- dairy ice cream formulations obtained lower overrun (p < 0.001). There was a negative correlation between percent fat of ice cream and overrun. Crude fat and protein contents of the ice creams were ranged from 10.52-11.62 % and 3.42-4.94 % respectively. Inclusion of coconut products resulted in increased total phenolics and minerals (ash). Non-dairy formulations were preferred over dairy counterpart with respect to flavour and taste during the sensory evaluation carried out with four different age groups. Thus, the study enlightens the potential scope of utilization coconut products in ice cream industry. It also gave a lead towards developing non-dairy/ vegan delicacy on coconut. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-021-05279-y.

4.
J Texture Stud ; 53(6): 870-882, 2022 10.
Article in English | MEDLINE | ID: mdl-35583967

ABSTRACT

The impacts of cocoa solids and coconut sugar on the sensory perception of bean-to-bar dark chocolate were investigated with mixture design using response surface methodology. The maximum and minimum levels of cocoa nib, cocoa butter, and coconut sugar for the preparation of chocolate were 35-50%, 15-30%, and 20-35%, respectively. A suitable mathematical model was used to evaluate each response. Maximum and minimum levels of components caused a poor sensory acceptance of the resultant dark chocolate. The optimum level of independent variables, for the best set of responses, was 44.7% cocoa nib, 25.2% cocoa butter, and 30.2% coconut sugar, with a hedonic score of 8.28 for appearance, 8.64 for mouth feel, 8.71 for texture, 8.68 for taste, and 8.51 for overall acceptability, at a desirability of 0.86. The minimum time for grinding the chocolate mix was 24 hour, which was evident from the microscopic analysis of the chocolate mix. The optimized chocolate (70% dark) per 100 g constitutes 1.06 g moisture, 50.09 g crude fat, 10.37 g crude protein, 35.90 g carbohydrates, and 2.55 g ash content. The L, a, b values indicated a darker color and was stable under ambient condition with a hardness value of 59.52 N, which significantly decreased to 16.23 N within 10 min at ambient temperature (30 ± 2°C). The addition of coconut sugar along with cocoa solids incorporates polyphenols, flavonoids, antioxidant potential, and minerals into bean-to-bar dark chocolate and hence offers a commercial value and health potential for stakeholders.


Subject(s)
Cocos , Sugars
SELECTION OF CITATIONS
SEARCH DETAIL
...