Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5536, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013899

ABSTRACT

The radioisotope thorium-229 (229Th) is renowned for its extraordinarily low-energy, long-lived nuclear first-excited state. This isomeric state can be excited by vacuum ultraviolet (VUV) lasers and 229Th has been proposed as a reference transition for ultra-precise nuclear clocks. To assess the feasibility and performance of the nuclear clock concept, time-controlled excitation and depopulation of the 229Th isomer are imperative. Here we report the population of the 229Th isomeric state through resonant X-ray pumping and detection of the radiative decay in a VUV transparent 229Th-doped CaF2 crystal. The decay half-life is measured to 447(25) s, with a transition wavelength of 148.18(42) nm and a radiative decay fraction consistent with unity. Furthermore, we report a new "X-ray quenching" effect which allows to de-populate the isomer on demand and effectively reduce the half-life. Such controlled quenching can be used to significantly speed up the interrogation cycle in future nuclear clock schemes.

2.
Nature ; 617(7962): 706-710, 2023 05.
Article in English | MEDLINE | ID: mdl-37225880

ABSTRACT

The radionuclide thorium-229 features an isomer with an exceptionally low excitation energy that enables direct laser manipulation of nuclear states. It constitutes one of the leading candidates for use in next-generation optical clocks1-3. This nuclear clock will be a unique tool for precise tests of fundamental physics4-9. Whereas indirect experimental evidence for the existence of such an extraordinary nuclear state is substantially older10, the proof of existence has been delivered only recently by observing the isomer's electron conversion decay11. The isomer's excitation energy, nuclear spin and electromagnetic moments, the electron conversion lifetime and a refined energy of the isomer have been measured12-16. In spite of recent progress, the isomer's radiative decay, a key ingredient for the development of a nuclear clock, remained unobserved. Here, we report the detection of the radiative decay of this low-energy isomer in thorium-229 (229mTh). By performing vacuum-ultraviolet spectroscopy of 229mTh incorporated into large-bandgap CaF2 and MgF2 crystals at the ISOLDE facility at CERN, photons of 8.338(24) eV are measured, in agreement with recent measurements14-16 and the uncertainty is decreased by a factor of seven. The half-life of 229mTh embedded in MgF2 is determined to be 670(102) s. The observation of the radiative decay in a large-bandgap crystal has important consequences for the design of a future nuclear clock and the improved uncertainty of the energy eases the search for direct laser excitation of the atomic nucleus.

3.
Sci Rep ; 13(1): 3897, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36890210

ABSTRACT

We have grown [Formula: see text]Th:CaF[Formula: see text] and [Formula: see text]Th:CaF[Formula: see text] single crystals for investigations on the VUV laser-accessible first nuclear excited state of [Formula: see text]Th, with the aim of building a solid-state nuclear clock. To reach high doping concentrations despite the extreme scarcity (and radioactivity) of [Formula: see text]Th, we have scaled down the crystal volume by a factor 100 compared to established commercial or scientific growth processes. We use the vertical gradient freeze method on 3.2 mm diameter seed single crystals with a 2 mm drilled pocket, filled with a co-precipitated CaF[Formula: see text]:ThF[Formula: see text]:PbF[Formula: see text] powder in order to grow single crystals. Concentrations of [Formula: see text] cm[Formula: see text] have been realized with [Formula: see text]Th with good (> 10%) VUV transmission. However, the intrinsic radioactivity of [Formula: see text]Th drives radio-induced dissociation during growth and radiation damage after solidification. Both lead to a degradation of VUV transmission, currently limiting the [Formula: see text]Th concentration to [Formula: see text] cm[Formula: see text].

4.
J Synchrotron Radiat ; 28(Pt 1): 111-119, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33399559

ABSTRACT

This paper presents an absolute X-ray photon energy measurement method that uses a Bond diffractometer. The proposed system enables the prompt and rapid in situ measurement of photon energies over a wide energy range. The diffractometer uses a reference silicon single-crystal plate and a highly accurate angle encoder called SelfA. The performance of the system is evaluated by repeatedly measuring the energy of the first excited state of the potassium-40 nuclide. The excitation energy is determined as 29829.39 (6) eV, and this is one order of magnitude more accurate than the previous measurement. The estimated uncertainty of the photon energy measurement was 0.7 p.p.m. as a standard deviation and the maximum observed deviation was 2 p.p.m.

5.
Phys Rev Lett ; 125(14): 142503, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33064540

ABSTRACT

We present a measurement of the low-energy (0-60 keV) γ-ray spectrum produced in the α decay of ^{233}U using a dedicated cryogenic magnetic microcalorimeter. The energy resolution of ∼10 eV, together with exceptional gain linearity, allows us to determine the energy of the low-lying isomeric state in ^{229}Th using four complementary evaluation schemes. The most precise scheme determines the ^{229}Th isomer energy to be 8.10(17) eV, corresponding to 153.1(32) nm, superseding in precision previous values based on γ spectroscopy, and agreeing with a recent measurement based on internal conversion electrons. We also measure branching ratios of the relevant excited states to be b_{29}=9.3(6)% and b_{42}<0.7%.

6.
Phys Rev Lett ; 125(3): 032501, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32745402

ABSTRACT

When Th nuclei are doped in CaF_{2} crystals, a set of electronic defect states appear in the crystal band gap which would otherwise provide complete transparency to vacuum-ultraviolet radiation. The coupling of these defect states to the 8 eV ^{229m}Th nuclear isomer in the CaF_{2} crystal is investigated theoretically. We show that although previously viewed as a nuisance, the defect states provide a starting point for nuclear excitation via electronic bridge mechanisms involving stimulated emission or absorption using an optical laser. The rates of these processes are at least 2 orders of magnitude larger than direct photoexcitation of the isomeric state using available light sources. The nuclear isomer population can also undergo quenching when triggered by the reverse mechanism, leading to a fast and controlled decay via the electronic shell. These findings are relevant for a possible solid-state nuclear clock based on the ^{229m}Th isomeric transition.

SELECTION OF CITATIONS
SEARCH DETAIL
...