Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 44(4): 898-914, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38328934

ABSTRACT

BACKGROUND: Smooth muscle cells (SMCs), which make up the medial layer of arteries, are key cell types involved in cardiovascular disease, the leading cause of mortality and morbidity worldwide. In response to microenvironment alterations, SMCs dedifferentiate from a contractile to a synthetic phenotype characterized by an increased proliferation, migration, production of ECM (extracellular matrix) components, and decreased expression of SMC-specific contractile markers. These phenotypic changes result in vascular remodeling and contribute to the pathogenesis of cardiovascular disease, including coronary artery disease, stroke, hypertension, and aortic aneurysms. Here, we aim to identify the genetic variants that regulate ECM secretion in SMCs and predict the causal proteins associated with vascular disease-related loci identified in genome-wide association studies. METHODS: Using human aortic SMCs from 123 multiancestry healthy heart transplant donors, we collected the serum-free media in which the cells were cultured for 24 hours and conducted liquid chromatography-tandem mass spectrometry-based proteomic analysis of the conditioned media. RESULTS: We measured the abundance of 270 ECM and related proteins. Next, we performed protein quantitative trait locus mapping and identified 20 loci associated with secreted protein abundance in SMCs. We functionally annotated these loci using a colocalization approach. This approach prioritized the genetic variant rs6739323-A at the 2p22.3 locus, which is associated with lower expression of LTBP1 (latent-transforming growth factor beta-binding protein 1) in SMCs and atherosclerosis-prone areas of the aorta, and increased risk for SMC calcification. We found that LTBP1 expression is abundant in SMCs, and its expression at mRNA and protein levels was reduced in unstable and advanced atherosclerotic plaque lesions. CONCLUSIONS: Our results unravel the SMC proteome signature associated with vascular disorders, which may help identify potential therapeutic targets to accelerate the pathway to translation.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Humans , Cardiovascular Diseases/metabolism , Genome-Wide Association Study , Proteomics , Muscle, Smooth, Vascular/metabolism , Aorta/metabolism , Atherosclerosis/pathology , Myocytes, Smooth Muscle/metabolism , Cells, Cultured
3.
medRxiv ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37986932

ABSTRACT

Background: Smooth muscle cells (SMCs), which make up the medial layer of arteries, are key cell types involved in cardiovascular diseases (CVD), the leading cause of mortality and morbidity worldwide. In response to microenvironment alterations, SMCs dedifferentiate from a "contractile" to a "synthetic" phenotype characterized by an increased proliferation, migration, production of extracellular matrix (ECM) components, and decreased expression of SMC-specific contractile markers. These phenotypic changes result in vascular remodeling and contribute to the pathogenesis of CVD, including coronary artery disease (CAD), stroke, hypertension, and aortic aneurysms. Here, we aim to identify the genetic variants that regulate ECM secretion in SMCs and predict the causal proteins associated with vascular disease-related loci identified in genome-wide association studies (GWAS). Methods: Using human aortic SMCs from 123 multi-ancestry healthy heart transplant donors, we collected the serum-free media in which the cells were cultured for 24 hours and conducted Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of the conditioned media. Results: We measured the abundance of 270 ECM and related proteins. Next, we performed protein quantitative trait locus mapping (pQTL) and identified 20 loci associated with secreted protein abundance in SMCs. We functionally annotated these loci using a colocalization approach. This approach prioritized the genetic variant rs6739323-A at the 2p22.3 locus, which is associated with lower expression of LTBP1 in SMCs and atherosclerosis-prone areas of the aorta, and increased risk for SMC calcification. We found that LTBP1 expression is abundant in SMCs, and its expression at mRNA and protein levels was reduced in unstable and advanced atherosclerotic plaque lesions. Conclusions: Our results unravel the SMC proteome signature associated with vascular disorders, which may help identify potential therapeutic targets to accelerate the pathway to translation.

4.
J Cardiol ; 81(2): 179-188, 2023 02.
Article in English | MEDLINE | ID: mdl-36122642

ABSTRACT

Bioresorbable scaffolds (BRS) were developed to overcome the obstacles of metallic stents, mostly related to sustained presence of metallic foreign body in the coronary vessel. Following earlier success of single-arm BRS studies, randomized controlled trials of Absorb bioresorbable vascular scaffold (Abbott Vascular, Santa Clara, CA, USA) showed poor long-term clinical outcomes, particularly in terms of scaffold thrombosis. BRS made from magnesium alloy provide a promising alternative in terms of radial force, strut thickness and, potentially lower thrombogenicity. A recent clinical study demonstrated that magnesium-based BRS seems to be promising with regards to the risk of scaffold thrombosis. In this review, our aim is to describe the issues that prevented Absorb BVS from achieving favorable outcomes, provide current status of existing BRS technologies and the challenges that newer generation BRSs need to overcome, and the results of clinical studies for commercially available magnesium-based BRS, which remain the only BRS actively studied in clinical practice.


Subject(s)
Coronary Artery Disease , Drug-Eluting Stents , Percutaneous Coronary Intervention , Thrombosis , Humans , Absorbable Implants , Magnesium , Prosthesis Design , Treatment Outcome , Percutaneous Coronary Intervention/methods , Coronary Artery Disease/surgery
5.
Eur Heart J Cardiovasc Imaging ; 24(1): e1-e16, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36002376

ABSTRACT

Progression of atherosclerotic plaque in coronary arteries is characterized by complex cellular and non-cellular molecular interactions. Within recent years, atherosclerosis has been recognized as inflammation-driven disease condition, where progressive stages are characterized by morphological changes in plaque composition but also relevant molecular processes resulting in increased plaque vulnerability. While existing intravascular imaging modalities are able to resolve key morphological features during plaque progression, they lack capability to characterize the molecular profile of advanced atherosclerotic plaque. Because hybrid imaging modalities may provide incremental information related to plaque biology, they are expected to provide synergistic effects in detecting high risk patients and lesions. The aim of this article is to review existing literature on intravascular molecular imaging approaches, and to provide clinically oriented proposals of their application. In addition, we assembled an overview of future developments in this field geared towards detection of patients at risk for cardiovascular events.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Plaque, Atherosclerotic , Humans , Coronary Artery Disease/pathology , Multimodal Imaging/methods , Plaque, Atherosclerotic/pathology , Spectroscopy, Near-Infrared/methods , Ultrasonography, Interventional/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...