Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 24(11): 1933-1946, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37828378

ABSTRACT

The extent to which unconventional forms of antigen presentation drive T cell immunity is unknown. By convention, CD8 T cells recognize viral peptides, or epitopes, in association with classical major histocompatibility complex (MHC) class I, or MHC-Ia, but immune surveillance can, in some cases, be directed against peptides presented by nonclassical MHC-Ib, in particular the MHC-E proteins (Qa-1 in mice and HLA-E in humans); however, the overall importance of nonclassical responses in antiviral immunity remains unclear. Similarly uncertain is the importance of 'cryptic' viral epitopes, defined as those undetectable by conventional mapping techniques. Here we used an immunopeptidomic approach to search for unconventional epitopes that drive T cell responses in mice infected with influenza virus A/Puerto Rico/8/1934. We identified a nine amino acid epitope, termed M-SL9, that drives a co-immunodominant, cytolytic CD8 T cell response that is unconventional in two major ways: first, it is presented by Qa-1, and second, it has a cryptic origin, mapping to an unannotated alternative reading frame product of the influenza matrix gene segment. Presentation and immunogenicity of M-SL9 are dependent on the second AUG codon of the positive sense matrix RNA segment, suggesting translation initiation by leaky ribosomal scanning. During influenza virus A/Puerto Rico/8/1934 infection, M-SL9-specific T cells exhibit a low level of egress from the lungs and strong differentiation into tissue-resident memory cells. Importantly, we show that M-SL9/Qa-1-specific T cells can be strongly induced by messenger RNA vaccination and that they can mediate antigen-specific cytolysis in vivo. Our results demonstrate that noncanonical translation products can account for an important fraction of the T cell repertoire and add to a growing body of evidence that MHC-E-restricted T cells could have substantial therapeutic value.


Subject(s)
Influenza, Human , Humans , Mice , Animals , Epitopes , T-Lymphocytes, Cytotoxic , CD8-Positive T-Lymphocytes , Peptides , Epitopes, T-Lymphocyte
2.
Proc Natl Acad Sci U S A ; 119(25): e2206046119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35704758

ABSTRACT

Nuclear speckles are non-membrane-bound organelles known as storage sites for messenger RNA (mRNA) processing and splicing factors. More recently, nuclear speckles have also been implicated in splicing and export of a subset of mRNAs, including the influenza virus M mRNA that encodes proteins required for viral entry, trafficking, and budding. However, little is known about how nuclear speckles are assembled or regulated. Here, we uncovered a role for the cellular protein kinase TAO2 as a constituent of nuclear speckles and as a factor required for the integrity of these nuclear bodies and for their functions in pre-mRNA splicing and trafficking. We found that a nuclear pool of TAO2 is localized at nuclear speckles and interacts with nuclear speckle factors involved in RNA splicing and nuclear export, including SRSF1 and Aly/Ref. Depletion of TAO2 or inhibition of its kinase activity disrupts nuclear speckle structure, decreasing the levels of several proteins involved in nuclear speckle assembly and splicing, including SC35 and SON. Consequently, splicing and nuclear export of influenza virus M mRNA were severely compromised and caused a disruption in the virus life cycle. In fact, low levels of TAO2 led to a decrease in viral protein levels and inhibited viral replication. Additionally, depletion or inhibition of TAO2 resulted in abnormal expression of a subset of mRNAs with key roles in viral replication and immunity. Together, these findings uncovered a function of TAO2 in nuclear speckle formation and function and revealed host requirements and vulnerabilities for influenza infection.


Subject(s)
Cell Nucleus , Nuclear Speckles , Protein Kinases , RNA Splicing , Active Transport, Cell Nucleus , Cell Nucleus/enzymology , HeLa Cells , Humans , Protein Kinases/metabolism , RNA/metabolism , RNA, Messenger/metabolism , Serine-Arginine Splicing Factors/genetics
3.
Mol Cell ; 81(9): 1905-1919.e12, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33852893

ABSTRACT

Oxidative phosphorylation (OXPHOS) and glycolysis are the two major pathways for ATP production. The reliance on each varies across tissues and cell states, and can influence susceptibility to disease. At present, the full set of molecular mechanisms governing the relative expression and balance of these two pathways is unknown. Here, we focus on genes whose loss leads to an increase in OXPHOS activity. Unexpectedly, this class of genes is enriched for components of the pre-mRNA splicing machinery, in particular for subunits of the U1 snRNP. Among them, we show that LUC7L2 represses OXPHOS and promotes glycolysis by multiple mechanisms, including (1) splicing of the glycolytic enzyme PFKM to suppress glycogen synthesis, (2) splicing of the cystine/glutamate antiporter SLC7A11 (xCT) to suppress glutamate oxidation, and (3) secondary repression of mitochondrial respiratory supercomplex formation. Our results connect LUC7L2 expression and, more generally, the U1 snRNP to cellular energy metabolism.


Subject(s)
Glycolysis , Oxidative Phosphorylation , RNA Precursors/metabolism , RNA Splicing , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Gene Expression Regulation , Genome-Wide Association Study , Glutamic Acid/metabolism , Glycogen/metabolism , Glycolysis/genetics , HEK293 Cells , HeLa Cells , Humans , K562 Cells , Mitochondria/genetics , Mitochondria/metabolism , Oxidation-Reduction , Phosphofructokinase-1, Muscle Type/genetics , Phosphofructokinase-1, Muscle Type/metabolism , RNA Precursors/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Ribonucleoprotein, U1 Small Nuclear/genetics
4.
Nat Struct Mol Biol ; 27(10): 901-912, 2020 10.
Article in English | MEDLINE | ID: mdl-32807990

ABSTRACT

The Rbfox family of splicing factors regulate alternative splicing during animal development and in disease, impacting thousands of exons in the maturing brain, heart and muscle. Rbfox proteins have long been known to bind to the RNA sequence GCAUG with high affinity and specificity, but just half of Rbfox binding sites contain a GCAUG motif in vivo. We incubated recombinant RBFOX2 with over 60,000 mouse and human transcriptomic sequences to reveal substantial binding to several moderate-affinity, non-GCAYG sites at a physiologically relevant range of RBFOX2 concentrations. We find that these 'secondary motifs' bind Rbfox robustly in cells and that several together can exert regulation comparable to GCAUG in a trichromatic splicing reporter assay. Furthermore, secondary motifs regulate RNA splicing in neuronal development and in neuronal subtypes where cellular Rbfox concentrations are highest, enabling a second wave of splicing changes as Rbfox levels increase.


Subject(s)
Neurons/physiology , RNA Splicing Factors/chemistry , RNA Splicing Factors/metabolism , Repressor Proteins/metabolism , 3' Untranslated Regions , Amino Acid Motifs , Binding Sites , CD47 Antigen/genetics , CD47 Antigen/metabolism , Cell Differentiation , Gene Expression , Hep G2 Cells , Humans , Neurons/cytology , RNA Splicing , RNA Splicing Factors/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/genetics , Sequence Analysis, RNA
5.
Nature ; 580(7803): 402-408, 2020 04.
Article in English | MEDLINE | ID: mdl-32296183

ABSTRACT

Global insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype-phenotype relationships1,2. Here we present a human 'all-by-all' reference interactome map of human binary protein interactions, or 'HuRI'. With approximately 53,000 protein-protein interactions, HuRI has approximately four times as many such interactions as there are high-quality curated interactions from small-scale studies. The integration of HuRI with genome3, transcriptome4 and proteome5 data enables cellular function to be studied within most physiological or pathological cellular contexts. We demonstrate the utility of HuRI in identifying the specific subcellular roles of protein-protein interactions. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms that might underlie tissue-specific phenotypes of Mendelian diseases. HuRI is a systematic proteome-wide reference that links genomic variation to phenotypic outcomes.


Subject(s)
Proteome/metabolism , Extracellular Space/metabolism , Humans , Organ Specificity , Protein Interaction Mapping
6.
Cell ; 179(7): 1551-1565.e17, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31787377

ABSTRACT

The processing of RNA transcripts from mammalian genes occurs in proximity to their transcription. Here, we describe a phenomenon affecting thousands of genes that we call exon-mediated activation of transcription starts (EMATS), in which the splicing of internal exons impacts promoter choice and the expression level of the gene. We observed that evolutionary gain of internal exons is associated with gain of new transcription start sites (TSSs) nearby and increased gene expression. Inhibiting exon splicing reduced transcription from nearby promoters, and creation of new spliced exons activated transcription from cryptic promoters. The strongest effects occurred for weak promoters located proximal and upstream of efficiently spliced exons. Together, our findings support a model in which splicing recruits transcription machinery locally to influence TSS choice and identify exon gain, loss, and regulatory change as major contributors to the evolution of alternative promoters and gene expression in mammals.


Subject(s)
Exons , Promoter Regions, Genetic , Transcriptional Activation/genetics , 3T3 Cells , Animals , Evolution, Molecular , HeLa Cells , Humans , Mice , RNA Splicing , Transcription Initiation Site
7.
Cell ; 164(4): 805-17, 2016 02 11.
Article in English | MEDLINE | ID: mdl-26871637

ABSTRACT

While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms" are functionally divergent (i.e., "functional alloforms").


Subject(s)
Alternative Splicing , Protein Isoforms/metabolism , Proteome/metabolism , Animals , Cloning, Molecular , Evolution, Molecular , Humans , Models, Molecular , Open Reading Frames , Protein Interaction Domains and Motifs , Protein Interaction Maps , Proteome/analysis
8.
Cell ; 159(5): 1212-1226, 2014 11 20.
Article in English | MEDLINE | ID: mdl-25416956

ABSTRACT

Just as reference genome sequences revolutionized human genetics, reference maps of interactome networks will be critical to fully understand genotype-phenotype relationships. Here, we describe a systematic map of ?14,000 high-quality human binary protein-protein interactions. At equal quality, this map is ?30% larger than what is available from small-scale studies published in the literature in the last few decades. While currently available information is highly biased and only covers a relatively small portion of the proteome, our systematic map appears strikingly more homogeneous, revealing a "broader" human interactome network than currently appreciated. The map also uncovers significant interconnectivity between known and candidate cancer gene products, providing unbiased evidence for an expanded functional cancer landscape, while demonstrating how high-quality interactome models will help "connect the dots" of the genomic revolution.


Subject(s)
Protein Interaction Maps , Proteome/metabolism , Animals , Databases, Protein , Genome-Wide Association Study , Humans , Mice , Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...