Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
PLoS Negl Trop Dis ; 18(5): e0011292, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758957

ABSTRACT

BACKGROUND: Leptospirosis is a zoonosis caused by pathogenic species of bacteria belonging to the genus Leptospira. Most studies infer the epidemiological patterns of a single serogroup or aggregate all serogroups to estimate overall seropositivity, thus not exploring the risks of exposure to distinct serogroups. The present study aims to delineate the demographic, socioeconomic and environmental factors associated with seropositivity of Leptospira serogroup Icterohaemorraghiae and serogroup Cynopteri in an urban high transmission setting for leptospirosis in Brazil. METHODS/PRINCIPAL FINDINGS: We performed a cross-sectional serological study in five informal urban communities in the city of Salvador, Brazil. During the years 2018, 2020 2021, we recruited 2.808 residents and collected blood samples for serological analysis using microagglutination assays. We used a fixed-effect multinomial logistic regression model to identify risk factors associated with seropositivity for each serogroup. Seropositivity to Cynopteri increased with each year of age (OR 1.03; 95% CI 1.01-1.06) and was higher in those living in houses with unplastered walls (exposed brick) (OR 1.68; 95% CI 1.09-2.59) and where cats were present near the household (OR 2.00; 95% CI 1.03-3.88). Seropositivity to Icterohaemorrhagiae also increased with each year of age (OR 1.02; 95% CI 1.01-1.03) and was higher in males (OR 1.51; 95% CI 1.09-2.10), in those with work-related exposures (OR 1.71; 95% CI 1.10-2.66) or who had contact with sewage (OR 1.42; 95% CI 1.00-2.03). Spatial analysis showed differences in distribution of seropositivity to serogroups Icterohaemorrhagiae and Cynopteri within the five districts where study communities were situated. CONCLUSIONS/SIGNIFICANCE: Our data suggest distinct epidemiological patterns associated with the Icterohaemorrhagiae and Cynopteri serogroups in the urban environment at high risk for leptospirosis and with differences in spatial niches. We emphasize the need for studies that accurately identify the different pathogenic serogroups that circulate and infect residents of low-income areas.

2.
iScience ; 26(5): 106618, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37250299

ABSTRACT

Superspreaders are recognized as being important drivers of disease spread. However, models to date have assumed random occurrence of superspreaders, irrespective of whom they were infected by. Evidence suggests though that those individuals infected by superspreaders may be more likely to become superspreaders themselves. Here, we begin to explore, theoretically, the effects of such a positive feedback loop on (1) the final epidemic size, (2) the herd immunity threshold, (3) the basic reproduction number, R0, and (4) the peak prevalence of superspreaders, using a generic model for a hypothetical acute viral infection and illustrative parameter values. We show that positive feedback loops can have a profound effect on our chosen epidemic outcomes, even when the transmission advantage of superspreaders is moderate, and despite peak prevalence of superspreaders remaining low. We argue that positive superspreader feedback loops in different infectious diseases, including SARS-CoV-2, should be investigated further, both theoretically and empirically.

3.
medRxiv ; 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37090569

ABSTRACT

Background: Leptospirosis is a zoonosis caused by pathogenic species of bacteria belonging to the genus Leptospira. Most studies infer the epidemiological patterns of a single serogroup or aggregate all serogroups to estimate overall seropositivity, thus not exploring the risks of exposure to distinct serogroups. The present study aims to delineate the demographic, socioeconomic and environmental factors associated with seropositivity of Leptospira serogroup Icterohaemorraghiae and serogroup Cynopteri in an urban high transmission setting for leptospirosis in Brazil. Methods/Principal Findings: We performed a cross-sectional serological study in five urban informal communities in the city of Salvador, Brazil. During the years 2018, 2020 2021, we recruited 2.808 residents and collected blood samples for serological analysis using microagglutination assays. We used a mixed-effect multinomial logistic regression model to identify risk factors associated with seropositivity for each serogroup. Seropositivity to Cynopteri increased with age in years (OR 1.03; 95% CI 1.01-1.06) and was higher in those living in houses with unplaster walls (exposed brick) (OR 1.68; 95% CI 1.09-2.59) and where cats were present near the household (OR 2.00; 95% CI 1.03-3.88). Seropositivity to Icterohaemorrhagiae also increased with age in years (OR 1.02; 95% CI 1.01-1.03) but was higher in males (OR 1.51; 95% CI 1.09-2.10), in those with work-related exposures (OR 1.71; 95% CI 1.10-2.66) or who had contact with sewage (OR 1.42; 95% CI 1.00-2.03). Spatial analysis showed differences in distribution of seropositivity to serogroups Icterohaemorrhagiae and Cynopteri within the five districts where study communities were situated. Conclusions/Significance: Our data suggests distinct epidemiological patterns associated with serogroups Icterohaemorrhagiae and Cynopteri within the high-risk urban environment for leptospirosis and with differences of spatial niches. Future studies must identify the different pathogenic serogroups circulating in low-income areas, and further evaluate the potential role of cats in the transmission of the serogroup Cynopteri in urban settings.

4.
Mol Ecol ; 32(13): 3471-3482, 2023 07.
Article in English | MEDLINE | ID: mdl-37009948

ABSTRACT

Individuals differ in the nature of the immune responses they produce, affecting disease susceptibility and ultimately health and fitness. These differences have been hypothesized to have an origin in events experienced early in life that then affect trajectories of immune development and responsiveness. Here, we investigate how early-life immune expression profiles influence life history outcomes in a natural population of field voles, Microtus agrestis, in which we are able to monitor variation between and within individuals through time by repeat sampling of individually marked animals. We analysed the co-expression of 20 immune genes in early life to create a correlation network consisting of three main clusters, one of which (containing Gata3, Il10 and Il17) was associated with later-life reproductive success and susceptibility to chronic bacterial (Bartonella) infection. More detailed analyses supported associations between early-life expression of Il17 and reproductive success later in life, and of Il10 expression early in life and later infection with Bartonella. We also found significant association between an Il17 genotype and the early-life expression of Il10. Our results demonstrate that immune expression profiles can be manifested during early life with effects that persist through adulthood and that shape the variability among individuals in susceptibility to infection and fitness widely seen in natural populations.


Subject(s)
Bartonella Infections , Bartonella , Rodent Diseases , Animals , Interleukin-10/genetics , Rodentia , Genotype , Arvicolinae/genetics , Rodent Diseases/microbiology
5.
BMC Microbiol ; 23(1): 87, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997846

ABSTRACT

Mammalian gastrointestinal microbiomes are highly variable, both within individuals and across populations, with changes linked to time and ageing being widely reported. Discerning patterns of change in wild mammal populations can therefore prove challenging. We used high-throughput community sequencing methods to characterise the microbiome of wild field voles (Microtus agrestis) from faecal samples collected across 12 live-trapping field sessions, and then at cull. Changes in α- and ß-diversity were modelled over three timescales. Short-term differences (following 1-2 days captivity) were analysed between capture and cull, to ascertain the degree to which the microbiome can change following a rapid change in environment. Medium-term changes were measured between successive trapping sessions (12-16 days apart), and long-term changes between the first and final capture of an individual (from 24 to 129 days). The short period between capture and cull was characterised by a marked loss of species richness, while over medium and long-term in the field, richness slightly increased. Changes across both short and long timescales indicated shifts from a Firmicutes-dominant to a Bacteroidetes-dominant microbiome. Dramatic changes following captivity indicate that changes in microbiome diversity can be rapid, following a change of environment (food sources, temperature, lighting etc.). Medium- and long-term patterns of change indicate an accrual of gut bacteria associated with ageing, with these new bacteria being predominately represented by Bacteroidetes. While the patterns of change observed are unlikely to be universal to wild mammal populations, the potential for analogous shifts across timescales should be considered whenever studying wild animal microbiomes. This is especially true if studies involve animal captivity, as there are potential ramifications both for animal health, and the validity of the data itself as a reflection of a 'natural' state of an animal.


Subject(s)
Microbiota , Rodentia , Animals , Microbiota/genetics , Animals, Wild/microbiology , Bacteria/genetics , Mammals/microbiology , Bacteroidetes/genetics
6.
Elife ; 122023 01 16.
Article in English | MEDLINE | ID: mdl-36645701

ABSTRACT

The genotype of an individual is an important predictor of their immune function, and subsequently, their ability to control or avoid infection and ultimately contribute offspring to the next generation. However, the same genotype, subjected to different intrinsic and/or extrinsic environments, can also result in different phenotypic outcomes, which can be missed in controlled laboratory studies. Natural wildlife populations, which capture both genotypic and environmental variability, provide an opportunity to more fully understand the phenotypic expression of genetic variation. We identified a synonymous polymorphism in the high-affinity Immunoglobulin E (IgE) receptor (GC and non-GC haplotypes) that has sex-dependent effects on immune gene expression, susceptibility to infection, and reproductive success of individuals in a natural population of field voles (Microtus agrestis). We found that the effect of the GC haplotype on the expression of immune genes differed between sexes. Regardless of sex, both pro-inflammatory and anti-inflammatory genes were more highly relatively expressed in individuals with the GC haplotype than individuals without the haplotype. However, males with the GC haplotype showed a stronger signal for pro-inflammatory genes, while females showed a stronger signal for anti-inflammatory genes. Furthermore, we found an effect of the GC haplotype on the probability of infection with a common microparasite, Babesia microti, in females - with females carrying the GC haplotype being more likely to be infected. Finally, we found an effect of the GC haplotype on reproductive success in males - with males carrying the GC haplotype having a lower reproductive success. This is a rare example of a polymorphism whose consequences we are able to follow across immunity, infection, and reproduction for both males and females in a natural population.


Subject(s)
Receptors, IgE , Rodentia , Animals , Male , Female , Polymorphism, Genetic , Genotype , Haplotypes , Reproduction/genetics
7.
Mol Ecol ; 32(5): 1197-1210, 2023 03.
Article in English | MEDLINE | ID: mdl-36478482

ABSTRACT

Apicomplexans are a protozoan phylum of obligate parasites which may be highly virulent during acute infections, but may also persist as chronic infections which appear to have little fitness cost. Babesia microti is an apicomplexan haemoparasite that, in immunocompromised individuals, can cause severe, potentially fatal disease. However, in its natural host, wild field voles (Microtus agrestis), it exhibits chronic infections that have no detectable impact on survival or female fecundity. How is damage minimized, and what is the impact on the host's immune state and health? We examine the differences in immune state (here represented by expression of immune-related genes in multiple tissues) associated with several common chronic infections in a population of wild field voles. While some infections show little impact on immune state, we find strong associations between immune state and B. microti. These include indications of clearance of infected erythrocytes (increased macrophage activity in the spleen) and activity likely associated with minimizing damage from the infection (anti-inflammatory and antioxidant activity in the blood). By analysing gene expression from the same individuals at multiple time points, we show that the observed changes are a response to infection, rather than a risk factor. Our results point towards continual investment to minimize the damage caused by the infection. Thus, we shed light on how wild animals can tolerate some chronic infections, but emphasize that this tolerance does not come without a cost.


Subject(s)
Babesiosis , Animals , Female , Babesiosis/epidemiology , Babesiosis/parasitology , Rodentia , Persistent Infection , Arvicolinae , Immunomodulation
8.
Elife ; 112022 09 16.
Article in English | MEDLINE | ID: mdl-36111781

ABSTRACT

Background: Zoonotic spillover from animal reservoirs is responsible for a significant global public health burden, but the processes that promote spillover events are poorly understood in complex urban settings. Endemic transmission of Leptospira, the agent of leptospirosis, in marginalised urban communities occurs through human exposure to an environment contaminated by bacteria shed in the urine of the rat reservoir. However, it is unclear to what extent transmission is driven by variation in the distribution of rats or by the dispersal of bacteria in rainwater runoff and overflow from open sewer systems. Methods: We conducted an eco-epidemiological study in a high-risk community in Salvador, Brazil, by prospectively following a cohort of 1401 residents to ascertain serological evidence for leptospiral infections. A concurrent rat ecology study was used to collect information on the fine-scale spatial distribution of 'rattiness', our proxy for rat abundance and exposure of interest. We developed and applied a novel geostatistical framework for joint spatial modelling of multiple indices of disease reservoir abundance and human infection risk. Results: The estimated infection rate was 51.4 (95%CI 40.4, 64.2) infections per 1000 follow-up events. Infection risk increased with age until 30 years of age and was associated with male gender. Rattiness was positively associated with infection risk for residents across the entire study area, but this effect was stronger in higher elevation areas (OR 3.27 95% CI 1.68, 19.07) than in lower elevation areas (OR 1.14 95% CI 1.05, 1.53). Conclusions: These findings suggest that, while frequent flooding events may disperse bacteria in regions of low elevation, environmental risk in higher elevation areas is more localised and directly driven by the distribution of local rat populations. The modelling framework developed may have broad applications in delineating complex animal-environment-human interactions during zoonotic spillover and identifying opportunities for public health intervention. Funding: This work was supported by the Oswaldo Cruz Foundation and Secretariat of Health Surveillance, Brazilian Ministry of Health, the National Institutes of Health of the United States (grant numbers F31 AI114245, R01 AI052473, U01 AI088752, R01 TW009504 and R25 TW009338); the Wellcome Trust (102330/Z/13/Z), and by the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB/JCB0020/2016). MTE was supported by a Medical Research UK doctorate studentship. FBS participated in this study under a FAPESB doctorate scholarship.


Subject(s)
Leptospirosis , Poverty Areas , Adult , Animals , Brazil/epidemiology , Cohort Studies , Epidemiologic Studies , Geography , Humans , Leptospirosis/epidemiology , Male , Rats , Zoonoses/epidemiology
9.
PLoS One ; 17(7): e0270568, 2022.
Article in English | MEDLINE | ID: mdl-35857771

ABSTRACT

BACKGROUND: The presence of synanthropic rodents, such as Rattus norvegicus, in urban environments generates high costs of prophylaxis and control, in large part due to the environmental transmission of the pathogenic spirochete Leptospira interrogans, which causes leptospirosis. In Salvador, Brazil, The Center for Control of Zoonosis (CCZ) is responsible for planning and implementing Rodent Control Programs (RCP) which are based on chemical rodenticide. However, these strategies have not been standardized for use in developing countries. AIM: This study aimed to identify the effect of a chemical control campaign on the demographic variables of urban R. norvegicus, analyzing relative abundance, sex structure, body mass, and age of the population, as well as the characterization of spatial distribution among households, rodent capture campaigns and interventions. METHODS: This study was carried out during 2015 in three valleys of an urban poor community in Salvador. Individuals of R. norvegicus were systematically captured before (Pre-intervention) and three months (1st post-intervention) and six months (2nd post-intervention) after a chemical control intervention conducted by the CCZ in two valleys of the study area while the third valley was not included in the intervention campaign and was used as a non-intervention reference. We used analysis of variance to determine if intervention affected demographic variables and chi-square to compare proportions of infested households (Rodent infestation index-PII). RESULTS: During the chemical intervention, 939 households were visited. In the pre-intervention campaign, an effort of 310 trap nights resulted in 43 rodents captured, and in the 1st and 2nd, post-intervention campaigns resulted in 47 rodents captured over 312 trap nights and 36 rodents captured over 324 traps-nights, respectively. The rodent infestation index (PII) points did not show a reduction between the period before the intervention and the two periods after the chemical intervention (70%, 72%, and 65%, respectively). Regarding relative abundances, there was no difference between valleys and period before and two periods after chemical intervention (trap success valley 1: 0,18; 0,19; 0,18 / Valley 3 0,15; 0,17; 0,13/ P>0,05). Other demographic results showed that there was no difference in demographic characteristics of the rodent population before and after the intervention, as well as there being no influence of the application of rodenticide on the areas of concentration of capture of rodents between the campaigns. CONCLUSION: Our study indicates that the chemical control was not effective in controlling the population of R. norvegicus and provides evidence of the need for re-evaluation of rodent control practices in urban poor community settings.


Subject(s)
Leptospira interrogans , Leptospirosis , Rodent Diseases , Rodenticides , Animals , Brazil/epidemiology , Leptospirosis/epidemiology , Rats , Rodent Diseases/epidemiology , Rodentia
10.
J Infect Dis ; 225(1): 130-134, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34139761

ABSTRACT

In this study, we genotyped samples from environmental reservoirs (surface water and soil), colonized rat specimens, and cases of human severe leptospirosis from an endemic urban slum in Brazil, to determine the molecular epidemiology of pathogenic Leptospira and identify pathways of leptospirosis infection. We identified a well-established population of Leptospira interrogans serovar Copenhageni common to human leptospirosis cases, and animal and environmental reservoirs. This finding provides genetic evidence for a potential environmental spillover pathway for rat-borne leptospirosis through the environment in this urban community and highlights the importance of environmental and social interventions to reduce spillover infections.


Subject(s)
Environment , Leptospira/isolation & purification , Leptospirosis/epidemiology , Soil Microbiology , Water Microbiology , Amplified Fragment Length Polymorphism Analysis , Animals , Brazil/epidemiology , Humans , Leptospira/genetics , Leptospira interrogans/genetics , Leptospirosis/diagnosis , Molecular Epidemiology , Phylogeny , Rats , Sequence Analysis, DNA
11.
Parasitology ; 148(8): 994-1002, 2021 07.
Article in English | MEDLINE | ID: mdl-33843507

ABSTRACT

The nematode Angiostrongylus cantonensis is the most common cause of neuroangiostrongyliasis (manifested as eosinophilic meningitis) in humans. Gastropod molluscs are used as intermediate hosts and rats of various species are definitive hosts of this parasite. In this study, we identified several environmental factors associated with the presence and abundance of terrestrial gastropods in an impoverished urban region in Brazil. We also found that body condition, age and presence of co-infection with other parasite species in urban Rattus norvegicus, as well as environmental factors were associated with the probability and intensity of A. cantonensis infection. The study area was also found to have a moderate prevalence of the nematode in rodents (33% of 168 individuals). Eight species of molluscs (577 individuals) were identified, four of which were positive for A. cantonensis. Our study indicates that the environmental conditions of poor urban areas (presence of running and standing water, sewage, humidity and accumulated rain and accumulation of construction materials) influenced both the distribution and abundance of terrestrial gastropods, as well as infected rats, contributing to the maintenance of the A. cantonensis transmission cycle in the area. Besides neuroangiostrongyliasis, the presence of these hosts may also contribute to susceptibility to other zoonoses.


Subject(s)
Angiostrongylus cantonensis/isolation & purification , Gastropoda/parasitology , Rats/parasitology , Rodent Diseases/parasitology , Strongylida Infections/veterinary , Animals , Brazil/epidemiology , Feces/parasitology , Female , Gastropoda/classification , Male , Mollusca/parasitology , Nervous System Diseases/epidemiology , Nervous System Diseases/parasitology , Nervous System Diseases/veterinary , Poverty Areas , Prevalence , Rodent Diseases/epidemiology , Rodent Diseases/transmission , Strongylida Infections/epidemiology , Strongylida Infections/parasitology , Strongylida Infections/transmission , Urban Population
12.
PLoS Negl Trop Dis ; 15(3): e0009256, 2021 03.
Article in English | MEDLINE | ID: mdl-33788864

ABSTRACT

Residents of urban slums suffer from a high burden of zoonotic diseases due to individual, socioeconomic, and environmental factors. We conducted a cross-sectional sero-survey in four urban slums in Salvador, Brazil, to characterize how poverty and sanitation contribute to the transmission of rat-borne leptospirosis. Sero-prevalence in the 1,318 participants ranged between 10.0 and 13.3%. We found that contact with environmental sources of contamination, rather than presence of rat reservoirs, is what leads to higher risk for residents living in areas with inadequate sanitation. Further, poorer residents may be exposed away from the household, and ongoing governmental interventions were not associated with lower transmission risk. Residents at higher risk were aware of their vulnerability, and their efforts improved the physical environment near their household, but did not reduce their infection chances. This study highlights the importance of understanding the socioeconomic and environmental determinants of risk, which ought to guide intervention efforts.


Subject(s)
Leptospirosis/epidemiology , Poverty Areas , Poverty , Sanitation , Adult , Brazil/epidemiology , Cross-Sectional Studies , Female , Humans , Leptospirosis/etiology , Leptospirosis/transmission , Male , Middle Aged , Social Class
14.
J R Soc Interface ; 17(170): 20200398, 2020 09.
Article in English | MEDLINE | ID: mdl-32871096

ABSTRACT

A key requirement in studies of endemic vector-borne or zoonotic disease is an estimate of the spatial variation in vector or reservoir host abundance. For many vector species, multiple indices of abundance are available, but current approaches to choosing between or combining these indices do not fully exploit the potential inferential benefits that might accrue from modelling their joint spatial distribution. Here, we develop a class of multivariate generalized linear geostatistical models for multiple indices of abundance. We illustrate this novel methodology with a case study on Norway rats in a low-income urban Brazilian community, where rat abundance is a likely risk factor for human leptospirosis. We combine three indices of rat abundance to draw predictive inferences on a spatially continuous latent process, rattiness, that acts as a proxy for abundance. We show how to explore the association between rattiness and spatially varying environmental factors, evaluate the relative importance of each of the three contributing indices and assess the presence of residual, unexplained spatial variation, and identify rattiness hotspots. The proposed methodology is applicable more generally as a tool for understanding the role of vector or reservoir host abundance in predicting spatial variation in the risk of human disease.


Subject(s)
Insect Vectors , Zoonoses , Animals , Brazil/epidemiology , Disease Reservoirs , Rats
15.
Sci Rep ; 10(1): 7444, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32366957

ABSTRACT

Individuals vary in their immune response and, as a result, some are more susceptible to infectious disease than others. Little is known about the nature of this individual variation in natural populations, or which components of immune pathways are most responsible, but defining this underlying landscape of variation is an essential first step to understanding the drivers of this variation and, ultimately, predicting the outcome of infection. We describe transcriptome-wide variation in response to a standardised immune challenge in wild field voles. We find that genes (hereafter 'markers') can be categorised into a limited number of types. For the majority of markers, the response of an individual is dependent on its baseline expression level, with significant enrichment in this category for conventional immune pathways. Another, moderately sized, category contains markers for which the responses of different individuals are also variable but independent of their baseline expression levels. This category lacks any enrichment for conventional immune pathways. We further identify markers which display particularly high individual variability in response, and could be used as markers of immune response in larger studies. Our work shows how a standardised challenge performed on a natural population can reveal the patterns of natural variation in immune response.


Subject(s)
Arvicolinae/immunology , Arvicolinae/physiology , Immune System , Transcriptome , Animals , Arvicolinae/genetics , Female , Gene Expression Profiling , Gene Expression Regulation , Genetic Markers , Immunogenetics , Male , Prognosis , RNA-Seq , Regression Analysis , Signal Transduction , Spleen/immunology , T-Lymphocytes/immunology
16.
Emerg Infect Dis ; 26(2): 311-314, 2020 02.
Article in English | MEDLINE | ID: mdl-31961288

ABSTRACT

The incidence of hospitalized leptospirosis patients was positively associated with increased precipitation in Salvador, Brazil. However, Leptospira infection risk among a cohort of city residents was inversely associated with rainfall. These findings indicate that, although heavy rainfall may increase severe illness, Leptospira exposures can occur year-round.


Subject(s)
Hospitalization , Leptospirosis/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , Child , Child, Preschool , Female , Humans , Incidence , Leptospirosis/etiology , Male , Middle Aged , Poverty , Rain , Risk Factors , Seasons , Young Adult
17.
Epidemics ; 25: 26-34, 2018 12.
Article in English | MEDLINE | ID: mdl-29773482

ABSTRACT

Leptospirosis is a zoonosis that humans can contract via contact with animal reservoirs directly or with water contaminated with their urine. The primary reservoir of pathogenic leptospires within urban slum environments is the Norway rat (Rattus norvegicus). Motivated by the annual outbreaks of human leptospirosis in slum urban settings, the within population infection dynamics of the Norway rat were investigated in Pau da Lima, an community in Salvador, Brazil. A mechanistic model of the dynamics of leptospire infection was informed by extensive field and laboratory data was developed and explored analytically. To identify the intraspecific transmission route of most importance, a global sensitivity analysis of the basic reproduction number to its components was performed. In addition, different methods of rodent control were investigated by calculating target reproduction numbers. Our results suggest environmental transmission plays an important role in the maintenance of infection in the rodent population. To control numbers of wild Norway rats, combinations of controls are recommended but environmental control should also be investigated to reduce prevalence of infection in rats.


Subject(s)
Disease Reservoirs/microbiology , Leptospirosis/epidemiology , Leptospirosis/prevention & control , Poverty Areas , Rats , Rodent Diseases/epidemiology , Rodent Diseases/prevention & control , Animals , Brazil/epidemiology , Disease Reservoirs/veterinary , Female , Leptospirosis/veterinary , Male , Population Dynamics , Prevalence
18.
PLoS Negl Trop Dis ; 12(4): e0006415, 2018 04.
Article in English | MEDLINE | ID: mdl-29624576

ABSTRACT

BACKGROUND: Leptospirosis is an important zoonotic disease that causes considerable morbidity and mortality globally, primarily in residents of urban slums. While contact with contaminated water plays a critical role in the transmission of leptospirosis, little is known about the distribution and abundance of pathogenic Leptospira spp. in soil and the potential contribution of this source to human infection. METHODS/PRINCIPAL FINDINGS: We collected soil samples (n = 70) from three sites within an urban slum community endemic for leptospirosis in Salvador, Brazil. Using qPCR of Leptospira genes lipl32 and 16S rRNA, we quantified the pathogenic Leptospira load in each soil sample. lipl32 qPCR detected pathogenic Leptospira in 22 (31%) of 70 samples, though the median concentration among positive samples was low (median = 6 GEq/g; range: 4-4.31×102 GEq/g). We also observed heterogeneity in the distribution of pathogenic Leptospira at the fine spatial scale. However, when using 16S rRNA qPCR, we detected a higher proportion of Leptospira-positive samples (86%) and higher bacterial concentrations (median: 4.16×102 GEq/g; range: 4-2.58×104 GEq/g). Sequencing of the qPCR amplicons and qPCR analysis with all type Leptospira species revealed that the 16S rRNA qPCR detected not only pathogenic Leptospira but also intermediate species, although both methods excluded saprophytic Leptospira. No significant associations were identified between the presence of pathogenic Leptospira DNA and environmental characteristics (vegetation, rat activity, distance to an open sewer or a house, or soil clay content), though samples with higher soil moisture content showed higher prevalences. CONCLUSION/SIGNIFICANCE: This is the first study to successfully quantify the burden of pathogenic Leptospira in soil from an endemic region. Our results support the hypothesis that soil may be an under-recognized environmental reservoir contributing to transmission of pathogenic Leptospira in urban slums. Consequently, the role of soil should be considered when planning interventions aimed to reduce the burden of leptospirosis in these communities.


Subject(s)
Leptospira/isolation & purification , Leptospirosis/microbiology , Soil Microbiology , Animals , Brazil/epidemiology , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Humans , Leptospira/genetics , Poverty Areas , Prevalence , Public Health , RNA, Ribosomal, 16S/genetics , Rats , Real-Time Polymerase Chain Reaction , Soil , Zoonoses
19.
Appl Environ Microbiol ; 84(13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29703737

ABSTRACT

Leptospira interrogans is the etiological agent of leptospirosis, a globally distributed zoonotic disease. Human infection usually occurs through skin exposure with water and soil contaminated with the urine of chronically infected animals. In this study, we aimed to quantitatively characterize the survival of Leptospira interrogans serovar Copenhageni in environmental matrices. We constructed laboratory microcosms to simulate natural conditions and determined the persistence of DNA markers in soil, mud, spring water and sewage using a quantitative PCR (qPCR) and a propidium monoazide (PMA)-qPCR assay. We found that L. interrogans does not survive at high concentrations in the tested matrices. No net growth was detected in any of the experimental conditions and in all cases the concentration of the DNA markers targeted decreased from the beginning of the experiment following an exponential decay with a decreasing decay rate over time. After 12 and 21 days of incubation the spiked concentration of 106L. interrogans cells/ml or g decreased to approximately 100 cells/ml or g in soil and spring water microcosms, respectively. Furthermore, culturable L. interrogans persisted at concentrations under the limit of detection by PMA-qPCR or qPCR for at least 16 days in soil and 28 days in spring water. Altogether, our findings suggest that the environment is not a multiplication reservoir but a temporary carrier of L. interrogans Copenhageni, although the observed prolonged persistence at low concentrations may still enable the transmission of the disease.IMPORTANCE Leptospirosis is a zoonotic disease caused by spirochetes of the genus Leptospira that primarily affects impoverished populations worldwide. Although leptospirosis is transmitted by contact with water and soil, little is known about the ability of the pathogen to survive in the environment. In this study, we quantitatively characterized the survival of L. interrogans in environmental microcosms and found that although it cannot multiply in water, soil or sewage, it survives for extended time periods (days to weeks depending on the matrix). The survival parameters obtained here may help to better understand the distribution of pathogenic Leptospira in the environment and improve the predictions of human infection risks in areas where such infections are endemic.


Subject(s)
Leptospira interrogans/growth & development , Leptospira interrogans/isolation & purification , Microbial Viability , Soil Microbiology , Water Microbiology , Animals , DNA, Bacterial/analysis , Genetic Markers , Humans , Leptospira , Leptospira interrogans/genetics , Leptospira interrogans/pathogenicity , Leptospirosis/microbiology , Leptospirosis/transmission , Real-Time Polymerase Chain Reaction , Sewage/microbiology , Soil , Time Factors , Urine , Water , Waterborne Diseases/microbiology , Waterborne Diseases/transmission , Zoonoses
20.
Int J Appl Earth Obs Geoinf ; 64: 249-255, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29399006

ABSTRACT

In Kazakhstan, plague outbreaks occur when its main host, the great gerbil, exceeds an abundance threshold. These live in family groups in burrows, which can be mapped using remote sensing. Occupancy (percentage of burrows occupied) is a good proxy for abundance and hence the possibility of an outbreak. Here we use time series of satellite images to estimate occupancy remotely. In April and September 2013, 872 burrows were identified in the field as either occupied or empty. For satellite images acquired between April and August, 'burrow objects' were identified and matched to the field burrows. The burrow objects were represented by 25 different polygon types, then classified (using a majority vote from 10 Random Forests) as occupied or empty, using Normalized Difference Vegetation Indices (NDVI) calculated for all images. Throughout the season NDVI values were higher for empty than for occupied burrows. Occupancy status of individual burrows that were continuously occupied or empty, was classified with producer's and user's accuracy values of 63 and 64% for the optimum polygon. Occupancy level was predicted very well and differed 2% from the observed occupancy. This establishes firmly the principle that occupancy can be estimated using satellite images with the potential to predict plague outbreaks over extensive areas with much greater ease and accuracy than previously.

SELECTION OF CITATIONS
SEARCH DETAIL
...