Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Pharm Des ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39129154

ABSTRACT

INTRODUCTION: Silver nanoparticles (AgNPs) have gained significance due to their practical use in the medicinal field, especially in the treatment of tumors and cancer. The current article explores a green synthetic method for the preparation of AgNPs using leaf extract of Euphorbia royleanas. METHODS: The synthesis was conducted at different parameters like concentration of AgNO3, pH, salt concentration, temperature and time to optimize best results for their biochemical applications. It was validated through UV-V spectroscopy (400-450 nm) with 1:3 (concentration ratio of leaf ethanolic extract and 1 mM AgNO3 solution) at a pH value of 8 at 35oC, which were the best optimization conditions. The FTIR spectral bands showed the presence of C-N and -OH functional groups, indicating that -OH stretching and the aliphatic -C-H stretching were involved in the reduction of Ag ions. The XRD pattern showed the face-centered cubic structure of silver nanoparticles. The results of SEM revealed that AgNPs were predominantly spherical in shape, mono-dispersed, and arranged in scattered form. EDX analysis testified the presence of metallic silver along with other elements like Cl, C, and O. RESULTS: The investigation of biochemical parameters showed that AgNPs were influential in the discoloration of dye wastewater (methylene blue ), where 80% of dye color was removed in 20 min, followed by the significant (p < 0.05) analgesic activity with an inhibition percentage of 86.45% at a dose of 500 mg/kg. CONCLUSION: Similarly, the antioxidant activity with the highest percent inhibition was 55.4% (p < 0.0001), shown by the AgNPs at 500 µg/mL. AgNPs showed a 30 mm zone of inhibition at 100 µl/mL against Aspergillus niger. It was concluded that AgNPs provide a baseline in medical technology for the treatment of simple to chronic diseases.

2.
BMC Plant Biol ; 24(1): 815, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210254

ABSTRACT

Enhanced phytoremediation offers a rapid and eco-friendly approach for cleaning agricultural soil contaminated with copper and cadmium which pose a direct threat to food scarcity and security. The current study aimed to compare the effectiveness of the two commonly used additives, IAA and EDTA, for the remediation of copper (Cu) and cadmium (Cd) contaminated soils using sunflower and maize. The plants were cultivated in pots under controlled conditions with four sets of treatments: control (0), Cu50/Cd50, Cu50/Cd50 + EDTA, and Cu50/Cd50 + IAA. The results showed that Cu50/Cd50 mg/kg drastically compromised the phytoremediation potential of both plants, as evident by reduced shoot and root length, and lower biomass. However, the augmentation of Cu50/Cd50 with EDTA or IAA improved the tested parameters. In sunflower, EDTA enhanced the accumulation of Cu and Cd by 58% and 21%, respectively, and improved plant biomass by 41%, compared to control treatment. However, IAA exhibited higher accumulation of Cu and Cd by 64% and 25%, respectively, and enhanced plant biomass by 43%. In case of maize, IAA was superior to EDTA which enhanced the accumulation of Cu and Cd by 87% and 32% respectively, and increased the plant biomass by 57%, compared to control treatment. Our findings demonstrate that foliar IAA is more effective than EDTA in enhancing the phytoremediation potential of sunflower and maize for Cu and Cd.


Subject(s)
Biodegradation, Environmental , Cadmium , Copper , Edetic Acid , Helianthus , Indoleacetic Acids , Soil Pollutants , Zea mays , Cadmium/metabolism , Edetic Acid/pharmacology , Copper/metabolism , Soil Pollutants/metabolism , Helianthus/metabolism , Helianthus/drug effects , Zea mays/metabolism , Zea mays/growth & development , Zea mays/drug effects , Indoleacetic Acids/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Biomass , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL