Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 30(7): 126955, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32035698

ABSTRACT

This article describes the discovery of aryl hydroxy pyrimidinones and the medicinal chemistry efforts to optimize this chemotype for potent APJ agonism. APJ is a G-protein coupled receptor whose natural agonist peptide, apelin, displays hemodynamic improvement in the cardiac function of heart failure patients. A high throughput screen was undertaken to identify small molecule hits that could be optimized to mimic the apelin in vitro response. A potent and low molecular weight aryl hydroxy pyrimidinone analog 30 was identified through optimization of an HTS hit and medicinal chemistry efforts to improve its properties.


Subject(s)
Apelin Receptors/agonists , Pyrimidinones/pharmacology , Drug Discovery , HEK293 Cells , High-Throughput Screening Assays , Humans , Molecular Structure , Pyrimidinones/chemical synthesis , Structure-Activity Relationship
2.
J Med Chem ; 63(4): 1660-1670, 2020 02 27.
Article in English | MEDLINE | ID: mdl-31990537

ABSTRACT

Endothelial lipase (EL) hydrolyzes phospholipids in high-density lipoprotein (HDL) resulting in reduction in plasma HDL levels. Studies with murine transgenic, KO, or loss-of-function variants strongly suggest that inhibition of EL will lead to sustained plasma high-density lipoprotein cholesterol (HDL-C) increase and, potentially, a reduced cardiovascular disease (CVD) risk. Herein, we describe the discovery of a series of oxadiazole ketones, which upon optimization, led to the identification of compound 12. Compound 12 was evaluated in a mouse pharmacodynamics (PD) model and demonstrated a 56% increase in plasma HDL-C. In a mouse reverse cholesterol transport study, compound 12 stimulated cholesterol efflux by 53% demonstrating HDL-C functionality.


Subject(s)
Cholesterol, HDL/metabolism , Enzyme Inhibitors/pharmacology , Ketones/pharmacology , Lipase/antagonists & inhibitors , Oxadiazoles/pharmacology , Animals , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Ketones/chemical synthesis , Ketones/pharmacokinetics , Male , Mice, Inbred C57BL , Molecular Structure , Oxadiazoles/chemical synthesis , Oxadiazoles/pharmacokinetics , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 29(20): 126673, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31519373

ABSTRACT

A series of benzothiazoles with a cyano group was synthesized and evaluated as endothelial lipase (EL) inhibitors for the potential treatment of cardiovascular diseases. Efforts to reduce molecular weight and polarity in the series led to improved physicochemical properties of these compounds, as well as selectivity for EL over hepatic lipase (HL). As a benchmark compound, 8i demonstrated potent EL activity, an acceptable absorption, distribution, metabolism and elimination (ADME) profile and pharmacokinetic (PK) exposure which allowed further evaluation in preclinical animal efficacy studies.


Subject(s)
Benzothiazoles/chemistry , Cardiovascular Diseases/drug therapy , Enzyme Inhibitors/chemistry , Lipase/antagonists & inhibitors , Animals , Benzothiazoles/pharmacology , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Humans , Lipase/genetics , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Molecular Structure , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 29(15): 1918-1921, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31176700

ABSTRACT

A low level of high density lipoprotein (HDL) is an independent risk factor for cardiovascular disease. HDL reduces inflammation and plays a central role in reverse cholesterol transport, where cholesterol is removed from peripheral tissues and atherosclerotic plaque. One approach to increase plasma HDL is through inhibition of endothelial lipase (EL). EL hydrolyzes phospholipids in HDL resulting in reduction of plasma HDL. A series of benzothiazole sulfone amides was optimized for EL inhibition potency, lipase selectivity and improved pharmacokinetic profile leading to the identification of Compound 32. Compound 32 was evaluated in a mouse pharmacodynamic model and found to show no effect on HDL cholesterol level despite achieving targeted plasma exposure (Ctrough > 15 fold over mouse plasma EL IC50 over 4 days).

7.
Nature ; 564(7736): 439-443, 2018 12.
Article in English | MEDLINE | ID: mdl-30405246

ABSTRACT

Stimulator of interferon genes (STING) is a receptor in the endoplasmic reticulum that propagates innate immune sensing of cytosolic pathogen-derived and self DNA1. The development of compounds that modulate STING has recently been the focus of intense research for the treatment of cancer and infectious diseases and as vaccine adjuvants2. To our knowledge, current efforts are focused on the development of modified cyclic dinucleotides that mimic the endogenous STING ligand cGAMP; these have progressed into clinical trials in patients with solid accessible tumours amenable to intratumoral delivery3. Here we report the discovery of a small molecule STING agonist that is not a cyclic dinucleotide and is systemically efficacious for treating tumours in mice. We developed a linking strategy to synergize the effect of two symmetry-related amidobenzimidazole (ABZI)-based compounds to create linked ABZIs (diABZIs) with enhanced binding to STING and cellular function. Intravenous administration of a diABZI STING agonist to immunocompetent mice with established syngeneic colon tumours elicited strong anti-tumour activity, with complete and lasting regression of tumours. Our findings represent a milestone in the rapidly growing field of immune-modifying cancer therapies.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/immunology , Drug Design , Membrane Proteins/agonists , Animals , Benzimidazoles/administration & dosage , Benzimidazoles/therapeutic use , Humans , Ligands , Membrane Proteins/immunology , Mice , Models, Molecular , Nucleotides, Cyclic/metabolism
8.
ACS Med Chem Lett ; 9(12): 1263-1268, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30613337

ABSTRACT

Endothelial lipase (EL) selectively metabolizes high density lipoprotein (HDL) particles. Inhibition of EL has been shown to increase HDL concentration in preclinical animal models and was targeted as a potential treatment of atherosclerosis. We describe the introduction of an α-sulfone moiety to a benzothiazole series of EL inhibitors resulting in increased potency versus EL. Optimization for selectivity versus hepatic lipase and pharmacokinetic properties resulted in the discovery of 24, which showed good in vitro potency and bioavailability but, unexpectedly, did not increase HDL in the mouse pharmacodynamic model at the target plasma exposure.

9.
ACS Med Chem Lett ; 7(12): 1207-1212, 2016 Dec 08.
Article in English | MEDLINE | ID: mdl-27994765

ABSTRACT

Introducing a uniquely substituted phenyl sulfone into a series of biphenyl imidazole liver X receptor (LXR) agonists afforded a dramatic potency improvement for induction of ATP binding cassette transporters, ABCA1 and ABCG1, in human whole blood. The agonist series demonstrated robust LXRß activity (>70%) with low partial LXRα agonist activity (<25%) in cell assays, providing a window between desired blood cell ABCG1 gene induction in cynomolgus monkeys and modest elevation of plasma triglycerides for agonist 15. The addition of polarity to the phenyl sulfone also reduced binding to the plasma protein, human α-1-acid glycoprotein. Agonist 15 was selected for clinical development based on the favorable combination of in vitro properties, excellent pharmacokinetic parameters, and a favorable lipid profile.

10.
Cell Metab ; 24(2): 223-33, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27508871

ABSTRACT

The development of LXR agonists for the treatment of coronary artery disease has been challenged by undesirable properties in animal models. Here we show the effects of an LXR agonist on lipid and lipoprotein metabolism and neutrophils in human subjects. BMS-852927, a novel LXRß-selective compound, had favorable profiles in animal models with a wide therapeutic index in cynomolgus monkeys and mice. In healthy subjects and hypercholesterolemic patients, reverse cholesterol transport pathways were induced similarly to that in animal models. However, increased plasma and hepatic TG, plasma LDL-C, apoB, apoE, and CETP and decreased circulating neutrophils were also evident. Furthermore, similar increases in LDL-C were observed in normocholesterolemic subjects and statin-treated patients. The primate model markedly underestimated human lipogenic responses and did not predict human neutrophil effects. These studies demonstrate both beneficial and adverse LXR agonist clinical responses and emphasize the importance of further translational research in this area.


Subject(s)
Cell Movement , Imidazoles/adverse effects , Imidazoles/pharmacology , Lipid Metabolism , Lipoproteins/metabolism , Liver X Receptors/agonists , Neutrophils/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Adipose Tissue/metabolism , Adolescent , Adult , Animals , Cell Movement/drug effects , Cholesterol/blood , Cholesterol/metabolism , Healthy Volunteers , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypercholesterolemia/blood , Hypercholesterolemia/drug therapy , Imidazoles/therapeutic use , Leukocyte Count , Lipoproteins/blood , Macaca fascicularis , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mononuclear Phagocyte System/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Triglycerides/blood , Young Adult
11.
J Med Chem ; 56(23): 9586-600, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24182233

ABSTRACT

Several strategies have been employed to reduce the long in vivo half-life of our lead CB1 antagonist, triazolopyridazinone 3, to differentiate the pharmacokinetic profile versus the lead clinical compounds. An in vitro and in vivo clearance data set revealed a lack of correlation; however, when compounds with <5% free fraction were excluded, a more predictable correlation was observed. Compounds with log P between 3 and 4 were likely to have significant free fraction, so we designed compounds in this range to give more predictable clearance values. This strategy produced compounds with desirable in vivo half-lives, ultimately leading to the discovery of compound 46. The progression of compound 46 was halted due to the contemporaneous marketing and clinical withdrawal of other centrally acting CB1 antagonists; however, the design strategy successfully delivered a potent CB1 antagonist with the desired pharmacokinetic properties and a clean off-target profile.


Subject(s)
Pyridazines/pharmacokinetics , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Triazoles/pharmacokinetics , Animals , Cytochrome P-450 Enzyme System/metabolism , Drug Discovery , Half-Life , Protein Binding , Pyridazines/chemistry , Rats , Structure-Activity Relationship , Triazoles/chemistry
12.
Bioorg Med Chem Lett ; 21(22): 6856-60, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21962575

ABSTRACT

Obesity remains a significant public health issue leading to Type II diabetes and cardiovascular disease. CB1 antagonists have been shown to suppress appetite and reduce body weight in animal models as well as in humans. Evaluation of pre-clinical CB1 antagonists to establish relationships between in vitro affinity and in vivo efficacy parameters are enhanced by ex vivo receptor occupancy data. Synthesis and biological evaluation of a novel and highly selective radiolabeled CB1 antagonist is described. The radioligand was used to conduct ex vivo receptor occupancy studies.


Subject(s)
Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Radioligand Assay/methods , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Animals , Brain/diagnostic imaging , Humans , Obesity/drug therapy , Radiography , Rats
13.
Chem Res Toxicol ; 24(6): 905-12, 2011 Jun 20.
Article in English | MEDLINE | ID: mdl-21574629

ABSTRACT

The development of compounds with the potential for genotoxicity poses significant safety risks as well as risks of attrition. Although genotoxicity evaluation of the parent molecule is routine and reasonably predictive, assessing the risk of commercialization when release of a genotoxic degradant and/or metabolite from a nongenotoxic parent molecule is suspected is much more challenging and resource intensive. Much of the risk of the formation of a genotoxic degradant/metabolite can be discharged with the conduct of carcinogenicity studies in models where the compound is formed, but this approach requires a great deal of time and resources. In this manuscript, we investigated the contribution of various factors (pH, serum instability, and hepatic metabolism) to the formation of a mutagenic aromatic amine from a potent and highly selective thyromimetic compound ([3-(3,5-dibromo-4-(4-hydroxy-3-isopropyl-5-methylphenoxy)-2-methylphenylamino)-3-oxopropanoic acid], compound 1), under in vitro conditions. The kinetic parameters obtained from in vitro experiments combined with the pharmacokinetics of 1in vivo (e.g., plasma concentration-time profile and clearance) were used to estimate the extent of in vivo formation of [4-(4-amino-2,6-dibromo-3-methylphenoxy)-2-isopropyl-6-methylphenol] (compound 2), in rats upon administration of a single oral dose of 1. The agreement between the predicted values (1.9% conversion of total administered dose) with the observed levels of 2 in rats (0.2%-2.2% of the 10 mg/kg dose, 10 mg/kg) further prompted the utilization of this approach to predict the extent of release of this mutagen in humans upon administration of 1. The projection of 0.13% conversion to 2 from an efficacious daily dose of 15 mg of 1 translated to the generation of 20 µg of 2 and provided the basis for the decision to terminate the development of 1.


Subject(s)
Amines/toxicity , Anilides/toxicity , Hydrocarbons, Aromatic/toxicity , Malonates/toxicity , Mutagens/toxicity , Thyroid Hormones/toxicity , Amines/metabolism , Anilides/blood , Anilides/metabolism , Animals , Dogs , Haplorhini , Humans , Hydrocarbons, Aromatic/metabolism , Hydrogen-Ion Concentration , Liver/metabolism , Male , Malonates/blood , Malonates/metabolism , Mice , Models, Biological , Mutagenicity Tests , Mutagens/metabolism , Rats , Rats, Sprague-Dawley , Serum/metabolism , Thyroid Hormones/blood , Thyroid Hormones/metabolism
14.
J Med Chem ; 51(1): 4-16, 2008 Jan 10.
Article in English | MEDLINE | ID: mdl-18072718

ABSTRACT

A novel structural class of p38 mitogen-activated protein (MAP) kinase inhibitors consisting of substituted 4-(phenylamino)-pyrrolo[2,1- f][1,2,4]triazines has been discovered. An initial subdeck screen revealed that the oxindole-pyrrolo[2,1- f][1,2,4]triazine lead 2a displayed potent enzyme inhibition (IC 50 60 nM) and was active in a cell-based TNFalpha biosynthesis inhibition assay (IC 50 210 nM). Replacement of the C4 oxindole with 2-methyl-5- N-methoxybenzamide aniline 9 gave a compound with superior p38 kinase inhibition (IC 50 10 nM) and moderately improved functional inhibition in THP-1 cells. Further replacement of the C6 ester of the pyrrolo[2,1- f][1,2,4]triazine with amides afforded compounds with increased potency, excellent oral bioavailability, and robust efficacy in a murine model of acute inflammation (murine LPS-TNFalpha). In rodent disease models of chronic inflammation, multiple compounds demonstrated significant inhibition of disease progression leading to the advancement of 2 compounds 11b and 11j into further preclinical and toxicological studies.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Pyrroles/chemical synthesis , Triazines/chemical synthesis , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthritis, Experimental/drug therapy , Binding Sites , Crystallography, X-Ray , Drug Design , Female , Humans , In Vitro Techniques , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred BALB C , Microsomes, Liver/metabolism , Mitogen-Activated Protein Kinase 14/chemistry , Models, Molecular , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Rats , Rats, Inbred Lew , Structure-Activity Relationship , Triazines/pharmacokinetics , Triazines/pharmacology , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/blood
15.
Bioorg Med Chem Lett ; 17(14): 3978-82, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17513109

ABSTRACT

Structure-activity relationships for a series of pyrazine carboxamide CB1 antagonists are reported. Pharmaceutical properties of the series are improved via inclusion of hydroxyl-containing sidechains. This structural modification sufficiently improved ADME properties of an orally inactive series such that food intake reduction was achieved in rat feeding models. Compound 35 elicits a 46% reduction in food intake in ad libidum fed rats 4-h post-dose.


Subject(s)
Amides/pharmacology , Pyrazinamide/analogs & derivatives , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Amides/chemistry , Animals , Pyrazinamide/chemistry , Pyrazinamide/pharmacology , Rats , Structure-Activity Relationship
16.
J Med Chem ; 49(23): 6819-32, 2006 Nov 16.
Article in English | MEDLINE | ID: mdl-17154512

ABSTRACT

2-aminothiazole (1) was discovered as a novel Src family kinase inhibitor template through screening of our internal compound collection. Optimization through successive structure-activity relationship iterations identified analogs 2 (Dasatinib, BMS-354825) and 12m as pan-Src inhibitors with nanomolar to subnanomolar potencies in biochemical and cellular assays. Molecular modeling was used to construct a putative binding model for Lck inhibition by this class of compounds. The framework of key hydrogen-bond interactions proposed by this model was in agreement with the subsequent, published crystal structure of 2 bound to structurally similar Abl kinase. The oral efficacy of this class of inhibitors was demonstrated with 12m in inhibiting the proinflammatory cytokine IL-2 ex vivo in mice (ED50 approximately 5 mg/kg) and in reducing TNF levels in an acute murine model of inflammation (90% inhibition in LPS-induced TNFalpha production when dosed orally at 60 mg/kg, 2 h prior to LPS administration). The oral efficacy of 12m was further demonstrated in a chronic model of adjuvant arthritis in rats with established disease when administered orally at 0.3 and 3 mg/kg twice daily. Dasatinib (2) is currently in clinical trials for the treatment of chronic myelogenous leukemia.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Pyrimidines/chemical synthesis , Thiazoles/chemical synthesis , src-Family Kinases/antagonists & inhibitors , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthritis, Experimental/drug therapy , Cell Proliferation/drug effects , Chronic Disease , Dasatinib , Female , Humans , In Vitro Techniques , Inflammation/blood , Inflammation/chemically induced , Interleukin-2/antagonists & inhibitors , Lipopolysaccharides , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Molecular , Protein Binding , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Rats, Inbred Lew , Structure-Activity Relationship , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , Thiazoles/chemistry , Thiazoles/pharmacology , Tumor Necrosis Factor-alpha/metabolism
17.
J Med Chem ; 47(27): 6658-61, 2004 Dec 30.
Article in English | MEDLINE | ID: mdl-15615512

ABSTRACT

A series of substituted 2-(aminopyridyl)- and 2-(aminopyrimidinyl)thiazole-5-carboxamides was identified as potent Src/Abl kinase inhibitors with excellent antiproliferative activity against hematological and solid tumor cell lines. Compound 13 was orally active in a K562 xenograft model of chronic myelogenous leukemia (CML), demonstrating complete tumor regressions and low toxicity at multiple dose levels. On the basis of its robust in vivo activity and favorable pharmacokinetic profile, 13 was selected for additional characterization for oncology indications.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Pyrimidines/pharmacology , Thiazoles/pharmacology , src-Family Kinases/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Animals , Dasatinib , Humans , K562 Cells , Mice , Proto-Oncogene Proteins c-abl/chemistry , Pyrimidines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Thiazoles/pharmacokinetics , src-Family Kinases/chemistry
18.
Bioorg Med Chem Lett ; 14(24): 6061-6, 2004 Dec 20.
Article in English | MEDLINE | ID: mdl-15546730
19.
J Med Chem ; 47(18): 4517-29, 2004 Aug 26.
Article in English | MEDLINE | ID: mdl-15317463

ABSTRACT

A series of novel anilino 5-azaimidazoquinoxaline analogues possessing potent in vitro activity against p56Lck and T cell proliferation have been discovered. Subsequent SAR studies led to the identification of compound 4 (BMS-279700) as an orally active lead candidate that blocks the production of proinflammatory cytokines (IL-2 and TNFalpha) in vivo. In addition, an expanded set of imidazoquinoxalines provided several descriptive QSAR models highlighting the influence of significant steric and electronic features. The H-bonding (Met319) contribution to observed binding affinities within a tightly congeneric series was found to be significant.


Subject(s)
Anti-Inflammatory Agents/chemistry , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Quantitative Structure-Activity Relationship , Quinoxalines/chemistry , Quinoxalines/pharmacokinetics , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Biological Availability , Cytokines/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Female , Hydrogen Bonding , Inhibitory Concentration 50 , Mice , Mice, Inbred C57BL , Models, Molecular , Pyrazines/chemistry , Pyrazines/pharmacology , Quinoxalines/pharmacology , src-Family Kinases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...