Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 97(4)2021 03 31.
Article in English | MEDLINE | ID: mdl-33571366

ABSTRACT

A better understanding of factors shaping the rhizosphere microbiota is important for sustainable crop production. We hypothesized that the effect of agricultural management on the soil microbiota is reflected in the assemblage of the rhizosphere microbiota with implications for plant performance. We designed a growth chamber experiment growing the model plant lettuce under controlled conditions in soils of a long-term field experiment with contrasting histories of tillage (mouldboard plough vs cultivator tillage), fertilization intensity (intensive standard nitrogen (N) + pesticides/growth regulators vs extensive reduced N without fungicides/growth regulators), and last standing field crop (rapeseed vs winter wheat). High-throughput sequencing of bacterial and archaeal 16S rRNA genes and fungal ITS2 regions amplified from total community DNA showed that these factors shaped the soil and rhizosphere microbiota of lettuce, however, to different extents among the microbial domains. Pseudomonas and Olpidium were identified as major indicators for agricultural management in the rhizosphere of lettuce. Long-term extensive fertilization history of soils resulted in higher lettuce growth and increased expression of genes involved in plant stress responses compared to intensive fertilization. Our work adds to the increasing knowledge on how soil microbiota can be manipulated by agricultural management practices which could be harnessed for sustainable crop production.


Subject(s)
Lactuca , Soil , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil Microbiology
2.
Plant Cell Environ ; 42(1): 295-309, 2019 01.
Article in English | MEDLINE | ID: mdl-29940081

ABSTRACT

Salt-affected farmlands are increasingly burdened by chlorides, carbonates, and sulfates of sodium, calcium, and magnesium. Intriguingly, the underlying physiological processes are studied almost always under NaCl stress. Two faba bean cultivars were subjected to low- and high-salt treatments of NaCl, Na2 SO4 , and KCl. Assimilation rate and leaf water vapor conductance were reduced to approximately 25-30% without biomass reduction after 7 days salt stress, but this did not cause severe carbon shortage. The equimolar treatments of Na+ , K+ , and Cl- showed comparable accumulation patterns in leaves and roots, except for SO42- which did not accumulate. To gain a detailed understanding of the effects caused by the tested ion combinations, we performed nontargeted gas chromatography-mass spectrometry-based metabolite profiling. Metabolic responses to various salts were in part highly linearly correlated, but only a few metabolite responses were common to all salts and in both cultivars. At high salt concentrations, only myo-inositol, allantoin, and glycerophosphoglycerol were highly significantly increased in roots under all tested conditions. We discovered several metabolic responses that were preferentially associated with the presence of Na+ , K+ , or Cl- . For example, increases of leaf proline and decreases of leaf fumaric acid and malic acid were apparently associated with Cl- accumulation.


Subject(s)
Salt Stress , Vicia faba/metabolism , Chlorides/metabolism , Metabolome/physiology , Osmotic Pressure , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Roots/metabolism , Plant Roots/physiology , Plant Transpiration/physiology , Potassium/metabolism , Salt Stress/physiology , Sodium/metabolism , Vicia faba/physiology , Water/metabolism
3.
Ann Bot ; 119(6): 965-976, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28110268

ABSTRACT

Background and Aims: Suaeda maritima is a halophyte commonly found on coastal wetlands in the intertidal zone. Due to its habitat S. maritima has evolved tolerance to high salt concentrations and hypoxic conditions in the soil caused by periodic flooding. In the present work, the adaptive mechanisms of S. maritima to salinity combined with hypoxia were investigated on a physiological and metabolic level. Methods: To compare the adaptive mechanisms to deficient, optimal and stressful salt concentrations, S. maritima plants were grown in a hydroponic culture under low, medium and high salt concentrations. Additionally, hypoxic conditions were applied to investigate the impact of hypoxia combined with different salt concentrations. A non-targeted metabolic approach was used to clarify the biochemical pathways underlying the metabolic and physiological adaptation mechanisms of S. maritima . Key Results: Roots exposed to hypoxic conditions showed an increased level of tricarboxylic acid (TCA)-cycle intermediates such as succinate, malate and citrate. During hypoxia, the concentration of free amino acids increased in shoots and roots. Osmoprotectants such as proline and glycine betaine increased in concentrations as the external salinity was increased under hypoxic conditions. Conclusions: The combination of high salinity and hypoxia caused an ionic imbalance and an increase of metabolites associated with osmotic stress and photorespiration, indicating a severe physiological and metabolic response under these conditions. Disturbed proline degradation in the roots induced an enhanced proline accumulation under hypoxia. The enhanced alanine fermentation combined with a partial flux of the TCA cycle might contribute to the tolerance of S. maritima to hypoxic conditions.


Subject(s)
Chenopodiaceae/physiology , Salinity , Salt-Tolerant Plants/physiology , Sodium Chloride/pharmacology , Adaptation, Physiological , Anaerobiosis , Dose-Response Relationship, Drug
SELECTION OF CITATIONS
SEARCH DETAIL
...