Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-37801044

ABSTRACT

Aging is associated with cognitive decline via incompletely understood mechanisms. Cerebral microvascular dysfunction occurs in aging, particularly impaired endothelium-mediated dilation. Parenchymal arterioles are bottlenecks of the cerebral microcirculation, and dysfunction causes a mismatch in nutrient demand and delivery, leaving neurons at risk. Extracellular nucleotides elicit parenchymal arteriole dilation by activating endothelial purinergic receptors (P2Y), leading to opening of K+ channels, including inwardly-rectifying K+ channels (KIR2). These channels amplify hyperpolarizing signals, resulting in dilation. However, it remains unknown if endothelial P2Y and KIR2 signaling are altered in brain parenchymal arterioles during aging. We hypothesized that aging impairs endothelial P2Y and KIR2 function in parenchymal arterioles. We observed reduced dilation to the purinergic agonist 2-methyl-S-ADP (1 µM) in arterioles from Aged (>24-month-old) mice when compared to Young (4-6 months of age) despite similar hyperpolarization in endothelial cells tubes. No differences were observed in vasodilation or endothelial cell hyperpolarization to activation of small- and intermediate-conductance Ca2+-activated K+ channels (KCa2.3 / KCa3.1) by NS309. Hyperpolarization to 15 mM [K+]E was smaller in Aged than Young mice, despite a paradoxical increased dilation in Aged arterioles to 15 mM [K+]E that was unchanged by endothelium removal. KIR2 Inhibition attenuated vasodilatory responses to 15 mM [K+]E and 1 µM 2-me-S-ADP in both Young and Aged arterioles. Further, we observed a significant increase in myogenic tone in Aged parenchymal arterioles, which was not enhanced by endothelium removal. We conclude that aging impairs endothelial KIR2 channel function in the cerebral microcirculation with possible compensation by smooth muscle cells.

2.
Am J Physiol Heart Circ Physiol ; 325(5): H1012-H1038, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37624095

ABSTRACT

Individuals aged ≥65 yr will comprise ∼20% of the global population by 2030. Cardiovascular disease remains the leading cause of death in the world with age-related endothelial "dysfunction" as a key risk factor. As an organ in and of itself, vascular endothelium courses throughout the mammalian body to coordinate blood flow to all other organs and tissues (e.g., brain, heart, lung, skeletal muscle, gut, kidney, skin) in accord with metabolic demand. In turn, emerging evidence demonstrates that vascular aging and its comorbidities (e.g., neurodegeneration, diabetes, hypertension, kidney disease, heart failure, and cancer) are "channelopathies" in large part. With an emphasis on distinct functional traits and common arrangements across major organs systems, the present literature review encompasses regulation of vascular ion channels that underlie blood flow control throughout the body. The regulation of myoendothelial coupling and local versus conducted signaling are discussed with new perspectives for aging and the development of chronic diseases. Although equipped with an awareness of knowledge gaps in the vascular aging field, a section has been included to encompass general feasibility, role of biological sex, and additional conceptual and experimental considerations (e.g., cell regression and proliferation, gene profile analyses). The ultimate goal is for the reader to see and understand major points of deterioration in vascular function while gaining the ability to think of potential mechanistic and therapeutic strategies to sustain organ perfusion and whole body health with aging.


Subject(s)
Muscle, Smooth, Vascular , Vascular Diseases , Animals , Humans , Muscle, Smooth, Vascular/metabolism , Ion Channels/metabolism , Aging/metabolism , Endothelium, Vascular/metabolism , Hemodynamics , Vascular Diseases/metabolism , Mammals
3.
J Alzheimers Dis ; 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37458037

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is associated with impaired cerebral circulation which underscores diminished delivery of blood oxygen and nutrients to and throughout the brain. In the 3xTg-AD mouse model, we have recently found that > 10 cerebrovascular miRNAs pertaining to vascular permeability, angiogenesis, and inflammation (e.g., let-7d, miR-99a, miR-132, miR-133a, miR-151-5p, and miR-181a) track early development of AD. Further, endothelial-specific miRNAs (miR-126-3p, miR-23a/b, miR-27a) alter with onset of overall AD pathology relative to stability of smooth muscle/pericyte-specific miRNAs (miR-143, miR-145). OBJECTIVE: We tested the hypothesis that cerebrovascular miRNAs indicating AD pathology share mRNA targets that regulate key endothelial cell functions such as angiogenesis, vascular permeability, and blood flow regulation. METHODS: As detected by NanoString nCounter miRNA Expression panel for 3xTg-AD mice, 61 cerebrovascular miRNAs and respective mRNA targets were examined using Ingenuity Pathway Analysis for canonical Cardiovascular (Cardio) and Nervous System (Neuro) Signaling. RESULTS: The number of targets regulated per miRNA were 21±2 and 33±3 for the Cardio and Neuro pathways respectively, whereby 14±2 targets overlap among pathways. Endothelial miRNAs primarily target members of the PDE, PDGF, SMAD, and VEGF families. Individual candidates regulated by≥4 miRNAs that best mark AD pathology presence in 3xTg-AD mice include CFL2, GRIN2B, PDGFB, SLC6A1, SMAD3, SYT3, and TNFRSF11B. CONCLUSION: miRNAs selective for regulation of endothelial function and respective downstream mRNA targets support a molecular basis for dysregulated cerebral blood flow regulation coupled with enhanced cell growth, proliferation, and inflammation.

5.
Microcirculation ; 30(1): e12797, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36577656

ABSTRACT

OBJECTIVE: Endothelial cell (EC) coupling occurs through gap junctions and underlies cerebral blood flow regulation governed by inward-rectifying K+ (KIR ) channels. This study addressed effects of KIR channel activity on EC coupling before and during Alzheimer's disease (AD). METHODS: Intact EC tubes (width: ~90-100 µm; length: ~0.5 mm) were freshly isolated from posterior cerebral arteries of young Pre-AD (1-3 months) and aged AD (13-18 months) male and female 3xTg-AD mice. Dual intracellular microelectrodes applied simultaneous current injections (±0.5-3 nA) and membrane potential (Vm ) recordings in ECs at distance ~400 µm. Elevated extracellular potassium ([K+ ]E ; 8-15 mmol/L; reference, 5 mmol/L) activated KIR channels. RESULTS: Conducted Vm (∆Vm ) responses ranged from ~-30 to 30 mV in response to -3 to +3 nA (linear regression, R2 ≥ .99) while lacking rectification for charge polarity or axial direction of spread. Conduction slope decreased ~10%-20% during 15 mmol/L [K+ ]E in Pre-AD males and AD females. 15 mmol/L [K+ ]E decreased conduction by ~10%-20% at lower ∆Vm thresholds in AD animals (~±20 mV) versus Pre-AD (~±25 mV). AD increased conducted hyperpolarization by ~10%-15% during 8-12 mmol/L [K+ ]E . CONCLUSIONS: Brain endothelial KIR channel activity modulates bidirectional spread of vasoreactive signals with enhanced regulation of EC coupling during AD pathology.


Subject(s)
Alzheimer Disease , Male , Female , Animals , Mice , Endothelial Cells/metabolism , Gap Junctions/metabolism , Endothelium, Vascular/metabolism , Membrane Potentials
6.
Biomedicines ; 10(8)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36009514

ABSTRACT

Vascular dysfunction and structural abnormalities in Alzheimer's disease (AD) are known to contribute to the progression of the pathology, and studies have tended to ignore the role of the vasculature in AD progression. We utilized the 3xTg-AD mouse model of AD to examine individual cerebral vessels and the cortical vascular network across the lifespan. Our vessel painting approach was used to label the entire cortical vasculature, followed by epifluorescence microscopy. The middle cerebral artery (MCA) tree was assessed with confocal microscopy, and a new method was developed to assess branching patterns as a measure of aging-related changes. We found that vascular remodeling was profoundly altered at 4-6 months of age, when the 3xTg-AD mouse is known to transition to cognitive impairment and Aß deposition in both sexes. Analysis of vascular features (density, junctions, length) of the MCA territory highlighted sex-dependent differences across the 3xTg-AD mouse lifespan, with no alterations in branching patterns. Our current cerebrovascular angioarchitectural analyses demonstrate progressive alterations in individual cortical vessels, as well as in the vascular network of the cortex. These new findings advance our understanding of brain anatomy and physiology in the 3xTg-AD mouse, while potentially identifying unique diagnostic signatures of AD progression.

7.
J Vis Exp ; (181)2022 03 11.
Article in English | MEDLINE | ID: mdl-35343953

ABSTRACT

Cerebral blood flow is conveyed by vascular resistance arteries and downstream parenchymal arterioles. Steady-state vascular resistance to blood flow increases with decreasing diameter from arteries to arterioles that ultimately feed into capillaries. Due to their smaller size and location in the parenchyma, arterioles have been relatively understudied and with less reproducibility in findings than surface pial arteries. Regardless, arteriolar endothelial cell structure and function-integral to the physiology and etiology of chronic degenerative diseases-requires extensive investigation. In particular, emerging evidence demonstrates that compromised endothelial function precedes and exacerbates cognitive impairment and dementia. In the parenchymal microcirculation, endothelial K+ channel function is the most robust stimulus to finely control the spread of vasodilation to promote increases in blood flow to areas of neuronal activity. This paper illustrates a refined method for freshly isolating intact and electrically coupled endothelial "tubes" (diameter, ~25 µm) from mouse brain parenchymal arterioles. Arteriolar endothelial tubes are secured during physiological conditions (37 °C, pH 7.4) to resolve experimental variables that encompass K+ channel function and their regulation, including intracellular Ca2+ dynamics, changes in membrane potential, and membrane lipid regulation. A distinct technical advantage versus arterial endothelium is the enhanced morphological resolution of cell and organelle (e.g., mitochondria) dimensions, which expands the usefulness of this technique. Healthy cerebral perfusion throughout life entails robust endothelial function in parenchymal arterioles, directly linking blood flow to the fueling of neuronal and glial activity throughout precise anatomical regions of the brain. Thus, it is expected that this method will significantly advance the general knowledge of vascular physiology and neuroscience concerning the healthy and diseased brain.


Subject(s)
Endothelium, Vascular , Vasodilation , Animals , Arterioles/physiology , Brain/blood supply , Endothelium, Vascular/metabolism , Mice , Reproducibility of Results , Vasodilation/physiology
8.
J Alzheimers Dis ; 85(1): 91-113, 2022.
Article in English | MEDLINE | ID: mdl-34776451

ABSTRACT

BACKGROUND: Emerging evidence demonstrates association of Alzheimer's disease (AD) with impaired delivery of blood oxygen and nutrients to and throughout the brain. The cerebral circulation plays multiple roles underscoring optimal brain perfusion and cognition entailing moment-to-moment blood flow control, vascular permeability, and angiogenesis. With currently no effective treatment to prevent or delay the progression of AD, cerebrovascular microRNA (miRNA) markers corresponding to post-transcriptional regulation may distinguish phases of AD. OBJECTIVE: We tested the hypothesis that cerebrovascular miRNA expression profiles indicate developmental stages of AD pathology. METHODS: Total RNA was isolated from total brain vessel segments of male and female 3xTg-AD mice [young, 1-2 mo; cognitive impairment (CI), 4-5 mo; extracellular amyloid-ß plaques (Aß), 6-8 mo; plaques+neurofibrillary tangles (AßT), 12-15 mo]. NanoString technology nCounter miRNA Expression panel for mouse was used to screen for 599 miRNAs. RESULTS: Significant (p < 0.05) downregulation of various miRNAs indicated transitions from young to CI (e.g., let-7g & miR-1944, males; miR-133a & miR-2140, females) and CI to Aß (e.g., miR-99a, males) but not from Aß to AßT. In addition, altered expression of select miRNAs from overall Pre-AD (young + CI) versus AD (Aß+ AßT) were detected in both males (let-7d, let-7i, miR-23a, miR-34b-3p, miR-99a, miR-126-3p, miR-132, miR-150, miR-151-5p, miR-181a) and females (miR-150, miR-539). Altogether, at least 20 cerebrovascular miRNAs effectively delineate AD versus Pre-AD pathology. CONCLUSION: Using the 3xTg-AD mouse model, these data demonstrate that cerebrovascular miRNAs pertaining to endothelial function, vascular permeability, angiogenesis, inflammation, and Aß/tau metabolism can track early development of AD.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Cognitive Dysfunction/genetics , MicroRNAs/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Biomarkers , Brain/pathology , Cerebrovascular Circulation/genetics , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Disease Models, Animal , Female , Male , Mice , Mice, Transgenic , MicroRNAs/metabolism , Neovascularization, Pathologic , Sex Characteristics
9.
J Alzheimers Dis Rep ; 5(1): 693-703, 2021.
Article in English | MEDLINE | ID: mdl-34755043

ABSTRACT

BACKGROUND: As the sixth-leading cause of death in the United States, Alzheimer's disease (AD) entails deteriorating endothelial control of blood flow throughout the brain. In particular, reduced inward-rectifying K+ (KIR) channel function in animal models of aging and AD compromises endothelial function and optimal perfusion of brain parenchyma. Deficient endothelial KIR channels may result from aberrant interaction with plasma membrane cholesterol as a primary regulator of membrane fluidity and ion channels. OBJECTIVE: We tested the hypothesis that mild methyl-ß-cyclodextrin (MßCD) treatment to reduce membrane cholesterol may restore endothelial KIR channel function in brain endothelium of old AD mice. METHODS: Membrane potential was continuously measured in isolated endothelial tubes from posterior cerebral arteries of young (1 to 3 months) and old (16 to 19 months) female 3xTg-AD mice before and after mild treatment with the cholesterol-removing agent MßCD (1 mmol/L). Elevated extracellular potassium ([K+]E; 15 mmol/L) and NS309 (1µmol/L) activated KIR and Ca2+-activated K+ (SKCa/IKCa) channels respectively before and after MßCD treatment. RESULTS: SKCa/IKCa channel function for producing hyperpolarization remained stable regardless of age group and MßCD treatment (ΔVm: ∼-33 mV). However, as deficient during AD, KIR channel function was restored (ΔVm: -9±1 mV) versus pre-MßCD conditions (-5±1 mV); a progressive effect that reached -14±1 mV hyperpolarization at 60 min following MßCD washout. CONCLUSION: In female animals, MßCD treatment of brain endothelium selectively restores KIR versus SKCa/IKCa channel function during AD. Thus, the endothelial cholesterol-KIR channel interface is a novel target for ameliorating perfusion of the AD brain.

10.
J Alzheimers Dis ; 76(4): 1423-1442, 2020.
Article in English | MEDLINE | ID: mdl-32651315

ABSTRACT

BACKGROUND: Development of Alzheimer's disease (AD) pathology is associated with impaired blood flow delivery of oxygen and nutrients throughout the brain. Cerebrovascular endothelium regulates vasoreactivity of blood vessel networks for optimal cerebral blood flow. OBJECTIVE: We tested the hypothesis that cerebrovascular endothelial Gq-protein-coupled receptor (GPCR; purinergic and muscarinic) and K+ channel [Ca2+-activated (KCa2.3/SK3 and KCa3.1/IK1) and inward-rectifying (KIR2.x)] function declines during progressive AD pathology. METHODS: We applied simultaneous measurements of intracellular Ca2+ ([Ca2+]i) and membrane potential (Vm) in freshly isolated endothelium from posterior cerebral arteries of 3×Tg-AD mice [young, no pathology (1- 2 mo), cognitive impairment (CI; 4- 5 mo), extracellular Aß plaques (Aß; 6- 8 mo), and Aß plaques + neurofibrillary tangles (AßT; 12- 15 mo)]. RESULTS: The coupling of ΔVm-to-Δ[Ca2+]i during AßT pathology was lowest for both sexes but, overall, ATP-induced purinergic receptor function was stable throughout AD pathology. SKCa/IKCa channel function itself was enhanced by ∼20% during AD (Aß+ AßT) versus pre-AD (Young + CI) in males while steady in females. Accordingly, hyperpolarization-induced [Ca2+]i increases following SKCa/IKCa channel activation and Δ[Ca2+]i-to-ΔVm coupling was enhanced by ≥two-fold during AD pathology in males but not females. Further, KIR channel function decreased by ∼50% during AD conditions versus young regardless of sex. Finally, other than a ∼40% increase in females versus males during Aß pathology, [Ca2+]i responses to the mitochondrial uncoupler FCCP were similar among AD versus pre-AD conditions. CONCLUSION: Altogether, AD pathology represents a condition of altered KCa and KIR channel function in cerebrovascular endothelium in a sex-dependent and sex-independent manner respectively.


Subject(s)
Alzheimer Disease/pathology , Endothelium, Vascular/metabolism , Mesenteric Arteries/pathology , Potassium Channels, Calcium-Activated/metabolism , Alzheimer Disease/metabolism , Animals , Calcium Signaling/physiology , Endothelium, Vascular/pathology , Female , Male , Membrane Potentials/physiology , Mesenteric Arteries/metabolism , Mice, Transgenic , Sex Factors
11.
J Gerontol A Biol Sci Med Sci ; 75(11): 2064-2073, 2020 10 15.
Article in English | MEDLINE | ID: mdl-31760422

ABSTRACT

Age-related dementia entails impaired blood flow to and throughout the brain due, in part, to reduced endothelial nitric oxide signaling. However, it is unknown whether sex affects cerebrovascular Gq-protein-coupled receptors (GPCRs) and K+ channels underlying endothelium-derived hyperpolarization (EDH) during progressive aging. Thus, we simultaneously evaluated intracellular Ca2+ ([Ca2+]i) and membrane potential (Vm) of intact endothelial tubes freshly isolated from posterior cerebral arteries of young (4-6 mo), middle-aged (12-16 mo), and old (24-28 mo) male and female C57BL/6 mice. Purinergic receptor function (vs. muscarinic) was dominant and enhanced for [Ca2+]i increases in old females versus old males. However, Ca2+-sensitive K+ channel function as defined by NS309-evoked Vm hyperpolarization was mildly impaired in females versus males during old age. This sex-based contrast in declined function of GPCRs and K+ channels to produce EDH may support a greater ability for physiological endothelial GPCR function to maintain optimal cerebral blood flow in females versus males during old age. As reflective of the pattern of cerebral blood flow decline in human subjects, inward-rectifying K+ (KIR) channel function decreased with progressive age regardless of sex. Combined age-related analyses masked male versus female aging and, contrary to expectation, hydrogen peroxide played a minimal role. Altogether, we conclude a sex-based divergence in cerebrovascular endothelial GPCR and K+ channel function while highlighting a previously unidentified form of age-related endothelial dysfunction as reduced KIR channel function.


Subject(s)
Aging/metabolism , Cerebral Arteries/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Potassium Channels/metabolism , Receptors, G-Protein-Coupled/metabolism , Age Factors , Animals , Humans , Male , Mice , Mice, Inbred C57BL , Sex Factors
12.
Toxicol Sci ; 171(2): 473-484, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31368507

ABSTRACT

Stress-induced mitochondrial calcium (Ca2+) overload is a key cellular toxic effectors and a trigger of cardiomyocyte death during cardiac ischemic injury through the opening of mitochondrial permeability transition pore (mPTP). We previously found that the valosin-containing protein (VCP), an ATPase-associated protein, protects cardiomyocytes against stress-induced death and also inhibits mPTP opening in vitro. However, the underlying molecular mechanisms are not fully understood. Here, we tested our hypothesis that VCP acts as a novel regulator of mitochondrial Ca2+ uptake proteins and resists cardiac mitochondrial Ca2+ overload by modulating mitochondrial Ca2+ homeostasis. By using a cardiac-specific transgenic (TG) mouse model in which VCP is overexpressed by 3.5 folds in the heart compared to the wild type (WT) mouse, we found that, under the pathological extra-mitochondrial Ca2+ overload, Ca2+ entry into cardiac mitochondria was reduced in VCP TG mice compared to their little-matched WT mice, subsequently preventing mPTP opening and ATP depletion under the Ca2+ challenge. Mechanistically, overexpression of VCP in the heart resulted in post-translational protein degradation of the mitochondrial Ca2+ uptake protein 1, an activator of the mitochondria Ca2+ uniporter that is responsible for mitochondrial calcium uptake. Together, our results reveal a new regulatory role of VCP in cardiac mitochondrial Ca2+ homeostasis and unlock the potential mechanism by which VCP confers its cardioprotection.

13.
Int J Mol Sci ; 20(6)2019 Mar 19.
Article in English | MEDLINE | ID: mdl-30893836

ABSTRACT

Effective delivery of oxygen and essential nutrients to vital organs and tissues throughout the body requires adequate blood flow supplied through resistance vessels. The intimate relationship between intracellular calcium ([Ca2+]i) and regulation of membrane potential (Vm) is indispensable for maintaining blood flow regulation. In particular, Ca2+-activated K⁺ (KCa) channels were ascertained as transducers of elevated [Ca2+]i signals into hyperpolarization of Vm as a pathway for decreasing vascular resistance, thereby enhancing blood flow. Recent evidence also supports the reverse role for KCa channels, in which they facilitate Ca2+ influx into the cell interior through open non-selective cation (e.g., transient receptor potential; TRP) channels in accord with robust electrical (hyperpolarization) and concentration (~20,000-fold) transmembrane gradients for Ca2+. Such an arrangement supports a feed-forward activation of Vm hyperpolarization while potentially boosting production of nitric oxide. Furthermore, in vascular types expressing TRP channels but deficient in functional KCa channels (e.g., collecting lymphatic endothelium), there are profound alterations such as downstream depolarizing ionic fluxes and the absence of dynamic hyperpolarizing events. Altogether, this review is a refined set of evidence-based perspectives focused on the role of the endothelial KCa and TRP channels throughout multiple experimental animal models and vascular types. We discuss the diverse interactions among KCa and TRP channels to integrate Ca2+, oxidative, and electrical signaling in the context of cardiovascular physiology and pathology. Building from a foundation of cellular biophysical data throughout a wide and diverse compilation of significant discoveries, a translational narrative is provided for readers toward the treatment and prevention of chronic, age-related cardiovascular disease.


Subject(s)
Aging/metabolism , Calcium/metabolism , Cardiovascular Physiological Phenomena , Chronic Disease , Potassium Channels, Calcium-Activated/metabolism , TRPV Cation Channels/metabolism , Animals , Humans
14.
J Vis Exp ; (143)2019 01 20.
Article in English | MEDLINE | ID: mdl-30735188

ABSTRACT

Cerebral arteries and their respective microcirculation deliver oxygen and nutrients to the brain via blood flow regulation. Endothelial cells line the lumen of blood vessels and command changes in vascular diameter as needed to meet the metabolic demand of neurons. Primary endothelial-dependent signaling pathways of hyperpolarization of membrane potential (Vm) and nitric oxide typically operate in parallel to mediate vasodilation and thereby increase blood flow. Although integral to coordinating vasodilation over several millimeters of vascular length, components of endothelium-derived hyperpolarization (EDH) have been historically difficult to measure. These components of EDH entail intracellular Ca2+ [Ca2+]i increases and subsequent activation of small- and intermediate conductance Ca2+-activated K+ (SKCa/IKCa) channels. Here, we present a simplified illustration of the isolation of fresh endothelium from mouse cerebral arteries; simultaneous measurements of endothelial [Ca2+]i and Vm using Fura-2 photometry and intracellular sharp electrodes, respectively; and a continuous superfusion of salt solutions and pharmacological agents under physiological conditions (pH 7.4, 37 °C). Posterior cerebral arteries from the Circle of Willis are removed free of the posterior communicating and the basilar arteries. Enzymatic digestion of cleaned posterior cerebral arterial segments and subsequent trituration facilitates removal of adventitia, perivascular nerves, and smooth muscle cells. Resulting posterior cerebral arterial endothelial "tubes" are then secured under a microscope and examined using a camera, photomultiplier tube, and one to two electrometers while under continuous superfusion. Collectively, this method can simultaneously measure changes in endothelial [Ca2+]i and Vm in discrete cellular locations, in addition to the spreading of EDH through gap junctions up to millimeter distances along the intact endothelium. This method is expected to yield a high-throughput analysis of the cerebral endothelial functions underlying mechanisms of blood flow regulation in the normal and diseased brain.


Subject(s)
Calcium/metabolism , Cell Separation/methods , Cerebral Arteries/cytology , Endothelium, Vascular , Membrane Potentials , Animals , Endothelial Cells/metabolism , Endothelium, Vascular/physiology , Female , Male , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/cytology , Nitric Oxide/metabolism
15.
Pharmacol Res Perspect ; 6(2): e00391, 2018 04.
Article in English | MEDLINE | ID: mdl-29636977

ABSTRACT

Electrical dynamics of freshly isolated cerebral endothelium have not been determined independently of perivascular nerves and smooth muscle. We tested the hypothesis that endothelium of cerebral and skeletal muscle arteries differentially utilizes purinergic and muscarinic signaling pathways to activate endothelium-derived hyperpolarization. Changes in membrane potential (Vm) were recorded in intact endothelial tubes freshly isolated from posterior cerebral and superior epigastric arteries of male and female C57BL/6 mice (age: 3-8 months). Vm was measured in response to activation of purinergic (P2Y) and muscarinic (M3) receptors in addition to small- and intermediate-conductance Ca2+-activated K+ (SKCa/IKCa) and inward rectifying K+ (KIR) channels using ATP (100 µmol·L-1), acetylcholine (ACh; 10 µmol·L-1), NS309 (0.01-10 µmol·L-1), and 15 mmol·L-1 KCl, respectively. Intercellular coupling was demonstrated via transfer of propidium iodide dye and electrical current (±0.5-3 nA) through gap junctions. With similarities observed across gender, peak hyperpolarization to ATP and ACh in skeletal muscle endothelial tubes was ~twofold and ~sevenfold higher, respectively, vs cerebral endothelial tubes, whereas responses to NS309 were similar (from resting Vm ~-30 mV to maximum ~-80 mV). Hyperpolarization (~8 mV) occurred during 15 mmol·L-1 KCl treatment in cerebral but not skeletal muscle endothelial tubes. Despite weaker hyperpolarization during endothelial GPCR stimulation in cerebral vs skeletal muscle endothelium, the capability for robust SKCa/IKCa activity is preserved across brain and skeletal muscle. As vascular reactivity decreases with aging and cardiovascular disease, endothelial K+ channel activity may be calibrated to restore blood flow to respective organs regardless of gender.


Subject(s)
Cerebral Cortex/blood supply , Endothelium, Vascular/physiology , Membrane Potentials/physiology , Muscle, Skeletal/blood supply , Potassium Channels/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Arteries/innervation , Arteries/metabolism , Arteries/physiology , Endothelial Cells/metabolism , Endothelial Cells/physiology , Endothelium, Vascular/innervation , Endothelium, Vascular/metabolism , Female , In Vitro Techniques , Male , Mice, Inbred C57BL , Muscle, Smooth, Vascular/innervation , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiology
16.
Microcirculation ; 25(2)2018 02.
Article in English | MEDLINE | ID: mdl-29117630

ABSTRACT

OBJECTIVE: Electrical signaling along the endothelium underlies spreading vasodilation and blood flow control. We use mathematical modeling to determine the electrical properties of the endothelium and gain insight into the biophysical determinants of electrical conduction. METHODS: Electrical conduction data along endothelial tubes (40 µm wide, 2.5 mm long) isolated from mouse skeletal muscle resistance arteries were analyzed using cable equations and a multicellular computational model. RESULTS: Responses to intracellular current injection attenuate with an axial length constant (λ) of 1.2-1.4 mm. Data were fitted to estimate the axial (ra ; 10.7 MΩ/mm) and membrane (rm ; 14.5 MΩ∙mm) resistivities, EC membrane resistance (Rm ; 12 GΩ), and EC-EC coupling resistance (Rgj ; 4.5 MΩ) and predict that stimulation of ≥30 neighboring ECs is required to elicit 1 mV of hyperpolarization at distance = 2.5 mm. Opening Ca2+ -activated K+ channels (KCa ) along the endothelium reduced λ by up to 55%. CONCLUSIONS: High Rm makes the endothelium sensitive to electrical stimuli and able to conduct these signals effectively. Whereas the activation of a group of ECs is required to initiate physiologically relevant hyperpolarization, this requirement is increased by myoendothelial coupling and KCa activation along the endothelium inhibits conduction by dissipating electrical signals.


Subject(s)
Endothelium, Vascular/physiology , Microvessels/physiology , Models, Biological , Signal Transduction/physiology , Animals , Membrane Potentials/physiology , Mice , Muscle, Skeletal/blood supply , Potassium Channels, Calcium-Activated/physiology , Regional Blood Flow , Synaptic Transmission , Vasodilation
17.
J Physiol ; 595(24): 7347-7368, 2017 12 15.
Article in English | MEDLINE | ID: mdl-28994159

ABSTRACT

KEY POINTS: Endothelial cell function in resistance arteries integrates Ca2+ signalling with hyperpolarization to promote relaxation of smooth muscle cells and increase tissue blood flow. Whether complementary signalling occurs in lymphatic endothelium is unknown. Intracellular calcium and membrane potential were evaluated in endothelial cell tubes freshly isolated from mouse collecting lymphatic vessels of the popliteal fossa. Resting membrane potential measured using intracellular microelectrodes averaged ∼-70 mV. Stimulation of lymphatic endothelium by acetylcholine or a TRPV4 channel agonist increased intracellular Ca2+ with robust depolarization. Findings from Trpv4-/- mice and with computational modelling suggest that the initial mobilization of intracellular Ca2+ leads to influx of Ca2+ and Na+ through TRPV4 channels to evoke depolarization. Lymphatic endothelial cells lack the Ca2+ -activated K+ channels present in arterial endothelium to generate endothelium-derived hyperpolarization. Absence of this signalling pathway with effective depolarization may promote rapid conduction of contraction along lymphatic muscle during lymph propulsion. ABSTRACT: Subsequent to a rise in intracellular Ca2+ ([Ca2+ ]i ), hyperpolarization of the endothelium coordinates vascular smooth muscle relaxation along resistance arteries during blood flow control. In the lymphatic vasculature, collecting vessels generate rapid contractions coordinated along lymphangions to propel lymph, but the underlying signalling pathways are unknown. We tested the hypothesis that lymphatic endothelial cells (LECs) exhibit Ca2+ and electrical signalling properties that facilitate lymph propulsion. To study electrical and intracellular Ca2+ signalling dynamics in lymphatic endothelium, we excised collecting lymphatic vessels from the popliteal fossa of mice and removed their muscle cells to isolate intact LEC tubes (LECTs). Intracellular recording revealed a resting membrane potential of ∼-70 mV. Acetylcholine (ACh) increased [Ca2+ ]i with a time course similar to that observed in endothelium of resistance arteries (i.e. rapid initial peak with a sustained 'plateau'). In striking contrast to the endothelium-derived hyperpolarization (EDH) characteristic of arteries, LECs depolarized (>15 mV) to either ACh or TRPV4 channel activation. This depolarization was facilitated by the absence of Ca2+ -activated K+ (KCa ) channels as confirmed with PCR, persisted in the absence of extracellular Ca2+ , was abolished by LaCl3 and was attenuated ∼70% in LECTs from Trpv4-/- mice. Computational modelling of ion fluxes in LECs indicated that omitting K+ channels supports our experimental results. These findings reveal novel signalling events in LECs, which are devoid of the KCa activity abundant in arterial endothelium. Absence of EDH with effective depolarization of LECs may promote the rapid conduction of contraction waves along lymphatic muscle during lymph propulsion.


Subject(s)
Calcium Signaling , Endothelium, Vascular/metabolism , Lymphatic Vessels/metabolism , Membrane Potentials , Acetylcholine/pharmacology , Animals , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Leucine/analogs & derivatives , Leucine/pharmacology , Lymphatic Vessels/drug effects , Lymphatic Vessels/physiology , Male , Mice , Mice, Inbred C57BL , Sulfonamides/pharmacology , TRPV Cation Channels/agonists , TRPV Cation Channels/metabolism
18.
J Gerontol A Biol Sci Med Sci ; 72(12): 1627-1637, 2017 Nov 09.
Article in English | MEDLINE | ID: mdl-28510636

ABSTRACT

Impaired blood flow to peripheral tissues during advanced age is associated with endothelial dysfunction and diminished bioavailability of nitric oxide (NO). However, it is unknown whether aging impacts coupling between intracellular calcium ([Ca2+]i) signaling and small- and intermediate K+ channel (SKCa/IKCa) activity during endothelium-derived hyperpolarization (EDH), a signaling pathway integral to dilation of the resistance vasculature. To address the potential impact of aging on EDH, Fura-2 photometry and intracellular recording were applied to evaluate [Ca2+]i and membrane potential of intact endothelial tubes (width, 60 µm; length, 1-3 mm) freshly isolated from superior epigastric arteries of young (4-6 mo) and old (24-26 mo) male C57BL/6 mice. In response to acetylcholine, intracellular release of Ca2+ from the endoplasmic reticulum (ER) was enhanced with aging. Further, treatment with the mitochondrial uncoupler FCCP evoked a significant increase of [Ca2+]i with membrane hyperpolarization in an SKCa/IKCa-dependent manner in the endothelium of old but not young mice. We conclude that the ability of resistance artery endothelium to release Ca2+ from intracellular stores (ie, ER and mitochondria) and hyperpolarize Vm via SKCa/IKCa activation is augmented as compensation for reduced NO bioavailability during advanced age.


Subject(s)
Aging/physiology , Arteries/physiology , Calcium Signaling/physiology , Endothelium, Vascular/physiology , Membrane Potentials/physiology , Mitochondria/physiology , Animals , Male , Mice , Mice, Inbred C57BL
19.
Microcirculation ; 24(3)2017 04.
Article in English | MEDLINE | ID: mdl-27801542

ABSTRACT

The integral role of the endothelium during the coordination of blood flow throughout vascular resistance networks has been recognized for several decades now. Early examination of the distinct anatomy and physiology of the endothelium as a signaling conduit along the vascular wall has prompted development and application of an intact endothelial "tube" study model isolated from rodent skeletal muscle resistance arteries. Vasodilatory signals such as increased endothelial cell (EC) Ca2+ ([Ca2+ ]i ) and hyperpolarization take place in single ECs while shared between electrically coupled ECs through gap junctions up to distances of millimeters (≥2 mm). The small- and intermediate-conductance Ca2+ activated K+ (SKCa /IKCa or KCa 2.3/KCa 3.1) channels function at the interface of Ca2+ signaling and hyperpolarization; a bidirectional relationship whereby increases in [Ca2+ ]i activate SKCa /IKCa channels to produce hyperpolarization and vice versa. Further, the spatial domain of hyperpolarization among electrically coupled ECs can be finely tuned via incremental modulation of SKCa /IKCa channels to balance the strength of local and conducted electrical signals underlying vasomotor activity. Multifunctional properties of the voltage-insensitive SKCa /IKCa channels of resistance artery endothelium may be employed for therapy during the aging process and development of vascular disease.


Subject(s)
Calcium , Endothelium, Vascular/cytology , Membrane Potentials , Signal Transduction/physiology , Animals , Arteries/physiology , Endothelial Cells/cytology , Endothelium, Vascular/physiology , Humans , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Vasomotor System/physiology
20.
J Physiol ; 593(20): 4531-48, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26260126

ABSTRACT

In resistance arteries, coupling a rise of intracellular calcium concentration ([Ca(2+)]i) to endothelial cell hyperpolarization underlies smooth muscle cell relaxation and vasodilatation, thereby increasing tissue blood flow and oxygen delivery. A controversy persists as to whether changes in membrane potential (V(m)) alter endothelial cell [Ca(2+)]i. We tested the hypothesis that V(m) governs [Ca(2+)]i in endothelium of resistance arteries by performing Fura-2 photometry while recording and controlling V(m) of intact endothelial tubes freshly isolated from superior epigastric arteries of C57BL/6 mice. Under resting conditions, [Ca(2+)]i did not change when V(m) shifted from baseline (∼-40 mV) via exposure to 10 µM NS309 (hyperpolarization to ∼-80 mV), via equilibration with 145 mm [K(+)]o (depolarization to ∼-5 mV), or during intracellular current injection (±0.5 to 5 nA, 20 s pulses) while V(m) changed linearly between ∼-80 mV and +10 mV. In contrast, during the plateau (i.e. Ca(2+) influx) phase of the [Ca(2+)]i response to approximately half-maximal stimulation with 100 nm ACh (∼EC50), [Ca(2+)]i increased as V(m) hyperpolarized below -40 mV and decreased as V(m) depolarized above -40 mV. The magnitude of [Ca(2+)]i reduction during depolarizing current injections correlated with the amplitude of the plateau [Ca(2+)]i response to ACh. The effect of hyperpolarization on [Ca(2+)]i was abolished following removal of extracellular Ca(2+), was enhanced subtly by raising extracellular [Ca(2+)] from 2 mm to 10 mm and was reduced by half in endothelium of TRPV4(-/-) mice. Thus, during submaximal activation of muscarinic receptors, V(m) can modulate Ca(2+) entry through the plasma membrane in accord with the electrochemical driving force.


Subject(s)
Calcium/physiology , Endothelium, Vascular/physiology , Membrane Potentials/physiology , Microvessels/physiology , Receptors, Muscarinic/physiology , Acetylcholine/pharmacology , Animals , Endothelial Cells/physiology , Epigastric Arteries/physiology , Indoles/pharmacology , Male , Mice, Inbred C57BL , Mice, Knockout , Oximes/pharmacology , Potassium Chloride/pharmacology , TRPV Cation Channels/agonists , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...