Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Front Cell Infect Microbiol ; 12: 798978, 2022.
Article in English | MEDLINE | ID: mdl-35463647

ABSTRACT

Junín virus (JUNV), a New World arenavirus, is a rodent-borne virus and the causative agent of Argentine hemorrhagic fever. Humans become infected through exposure to rodent host secreta and excreta and the resulting infection can lead to an acute inflammatory disease with significant morbidity and mortality. Little is understood about the molecular pathogenesis of arenavirus hemorrhagic fever infections. We utilized Reverse Phase Protein Microarrays (RPPA) to compare global alterations in the host proteome following infection with an attenuated vaccine strain, Candid#1 (CD1), and the most parental virulent strain, XJ13, of JUNV in a human cell culture line. Human small airway epithelial cells were infected with CD1 or XJ13 at an MOI of 10, or mock infected. To determine proteomic changes at early timepoints (T = 1, 3, 8 and 24 h), the JUNV infected or mock infected cells were lysed in compatible buffers for RPPA. Out of 113 proteins that were examined by RPPA, 14 proteins were significantly altered following JUNV infection. Several proteins were commonly phosphorylated between the two strains and these correspond to entry and early replication events, to include p38 mitogen-activated protein kinase (MAPK), heat shock protein 27 (HSP27), and nuclear factor kappa B (NFκB). We qualitatively confirmed the alterations of these three proteins following infection by western blot analysis. We also determined that the inhibition of either p38 MAPK, with the small molecule inhibitor SB 203580 or siRNA knockdown, or HSP27, by siRNA knockdown, significantly decreases JUNV replication. Our data suggests that HSP27 phosphorylation at S82 upon virus infection is dependent on p38 MAPK activity. This work sheds light on the nuances of arenavirus replication.


Subject(s)
Hemorrhagic Fever, American , Junin virus , HSP27 Heat-Shock Proteins , Humans , Junin virus/genetics , Proteomics , RNA, Small Interfering/genetics , p38 Mitogen-Activated Protein Kinases
2.
Viruses ; 13(10)2021 10 06.
Article in English | MEDLINE | ID: mdl-34696439

ABSTRACT

Biosafety, biosecurity, logistical, political, and technical considerations can delay or prevent the wide dissemination of source material containing viable virus from the geographic origin of an outbreak to laboratories involved in developing medical countermeasures (MCMs). However, once virus genome sequence information is available from clinical samples, reverse-genetics systems can be used to generate virus stocks de novo to initiate MCM development. In this study, we developed a reverse-genetics system for natural isolates of Ebola virus (EBOV) variants Makona, Tumba, and Ituri, which have been challenging to obtain. These systems were generated starting solely with in silico genome sequence information and have been used successfully to produce recombinant stocks of each of the viruses for use in MCM testing. The antiviral activity of MCMs targeting viral entry varied depending on the recombinant virus isolate used. Collectively, selecting and synthetically engineering emerging EBOV variants and demonstrating their efficacy against available MCMs will be crucial for answering pressing public health and biosecurity concerns during Ebola disease (EBOD) outbreaks.


Subject(s)
Ebolavirus/genetics , Hemorrhagic Fever, Ebola/genetics , Reverse Genetics/methods , Cell Line , Disease Outbreaks , Ebolavirus/immunology , Ebolavirus/pathogenicity , Genome, Viral/genetics , Genotype , Hemorrhagic Fever, Ebola/metabolism , Hemorrhagic Fever, Ebola/virology , Humans , Medical Countermeasures , Phenotype , Phylogeny
3.
J Clin Microbiol ; 59(5)2021 04 20.
Article in English | MEDLINE | ID: mdl-33653700

ABSTRACT

The long-lasting global COVID-19 pandemic demands timely genomic investigation of SARS-CoV-2 viruses. Here, we report a simple and efficient workflow for whole-genome sequencing utilizing one-step reverse transcription-PCR (RT-PCR) amplification on a microfluidic platform, followed by MiSeq amplicon sequencing. The method uses Fluidigm integrated fluidic circuit (IFC) and instruments to amplify 48 samples with 39 pairs of primers, including 35 custom-designed primer pairs and four additional primer pairs from the ARTIC network protocol v3. Application of this method on RNA samples from both viral isolates and clinical specimens demonstrates robustness and efficiency in obtaining the full genome sequence of SARS-CoV-2.


Subject(s)
Genome, Viral , High-Throughput Nucleotide Sequencing , Microfluidics , SARS-CoV-2/genetics , Whole Genome Sequencing , COVID-19/virology , DNA Primers , Humans , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction
4.
PLoS One ; 16(2): e0246366, 2021.
Article in English | MEDLINE | ID: mdl-33529233

ABSTRACT

Airborne transmission is predicted to be a prevalent route of human exposure with SARS-CoV-2. Aside from African green monkeys, nonhuman primate models that replicate airborne transmission of SARS-CoV-2 have not been investigated. A comparative evaluation of COVID-19 in African green monkeys, rhesus macaques, and cynomolgus macaques following airborne exposure to SARS-CoV-2 was performed to determine critical disease parameters associated with disease progression, and establish correlations between primate and human COVID-19. Respiratory abnormalities and viral shedding were noted for all animals, indicating successful infection. Cynomolgus macaques developed fever, and thrombocytopenia was measured for African green monkeys and rhesus macaques. Type II pneumocyte hyperplasia and alveolar fibrosis were more frequently observed in lung tissue from cynomolgus macaques and African green monkeys. The data indicate that, in addition to African green monkeys, macaques can be successfully infected by airborne SARS-CoV-2, providing viable macaque natural transmission models for medical countermeasure evaluation.


Subject(s)
COVID-19/physiopathology , Disease Models, Animal , Macaca mulatta , SARS-CoV-2/physiology , Animals , COVID-19/pathology , COVID-19/transmission , Chlorocebus aethiops , Disease Transmission, Infectious , Female , Lung/pathology , Macaca fascicularis , Male , Virus Shedding
5.
Viruses ; 12(9)2020 08 29.
Article in English | MEDLINE | ID: mdl-32872451

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging human pathogen, endemic in areas of China, Japan, and the Korea (KOR). It is primarily transmitted through infected ticks and can cause a severe hemorrhagic fever disease with case fatality rates as high as 30%. Despite its high virulence and increasing prevalence, molecular and functional studies in situ are scarce due to the limited availability of high-titer SFTSV exposure stocks. During the course of field virologic surveillance in 2017, we detected SFTSV in ticks and in a symptomatic soldier in a KOR Army training area. SFTSV was isolated from the ticks producing a high-titer viral exposure stock. Through the use of advanced genomic tools, we present here a complete, in-depth characterization of this viral stock, including a comparison with both the virus in its arthropod source and in the human case, and an in vivo study of its pathogenicity. Thanks to this detailed characterization, this SFTSV viral exposure stock constitutes a quality biological tool for the study of this viral agent and for the development of medical countermeasures, fulfilling the requirements of the main regulatory agencies.


Subject(s)
Bunyaviridae Infections/virology , Hemorrhagic Fevers, Viral/virology , Phlebovirus/isolation & purification , Adult , Animals , Bunyaviridae Infections/genetics , Bunyaviridae Infections/metabolism , Female , Genome, Viral , Humans , Male , Mice , Phlebovirus/physiology , Phylogeny , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Republic of Korea , Ticks/virology
6.
Nat Commun ; 11(1): 4131, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32807807

ABSTRACT

Recent outbreaks of viral hemorrhagic fevers (VHFs), including Ebola virus disease (EVD) and Lassa fever (LF), highlight the urgent need for sensitive, deployable tests to diagnose these devastating human diseases. Here we develop CRISPR-Cas13a-based (SHERLOCK) diagnostics targeting Ebola virus (EBOV) and Lassa virus (LASV), with both fluorescent and lateral flow readouts. We demonstrate on laboratory and clinical samples the sensitivity of these assays and the capacity of the SHERLOCK platform to handle virus-specific diagnostic challenges. We perform safety testing to demonstrate the efficacy of our HUDSON protocol in heat-inactivating VHF viruses before SHERLOCK testing, eliminating the need for an extraction. We develop a user-friendly protocol and mobile application (HandLens) to report results, facilitating SHERLOCK's use in endemic regions. Finally, we successfully deploy our tests in Sierra Leone and Nigeria in response to recent outbreaks.


Subject(s)
Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/diagnosis , Lassa Fever/diagnosis , Lassa virus/pathogenicity , Antibodies, Viral , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Ebolavirus/genetics , Hemorrhagic Fever, Ebola/virology , Lassa Fever/virology , Lassa virus/genetics
7.
bioRxiv ; 2020 May 14.
Article in English | MEDLINE | ID: mdl-32511338

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing an exponentially increasing number of coronavirus disease 19 (COVID-19) cases globally. Prioritization of medical countermeasures for evaluation in randomized clinical trials is critically hindered by the lack of COVID-19 animal models that enable accurate, quantifiable, and reproducible measurement of COVID-19 pulmonary disease free from observer bias. We first used serial computed tomography (CT) to demonstrate that bilateral intrabronchial instillation of SARS-CoV-2 into crab-eating macaques (Macaca fascicularis) results in mild-to-moderate lung abnormalities qualitatively characteristic of subclinical or mild-to-moderate COVID-19 (e.g., ground-glass opacities with or without reticulation, paving, or alveolar consolidation, peri-bronchial thickening, linear opacities) at typical locations (peripheral>central, posterior and dependent, bilateral, multi-lobar). We then used positron emission tomography (PET) analysis to demonstrate increased FDG uptake in the CT-defined lung abnormalities and regional lymph nodes. PET/CT imaging findings appeared in all macaques as early as 2 days post-exposure, variably progressed, and subsequently resolved by 6-12 days post-exposure. Finally, we applied operator-independent, semi-automatic quantification of the volume and radiodensity of CT abnormalities as a possible primary endpoint for immediate and objective efficacy testing of candidate medical countermeasures.

8.
Microbiol Resour Announc ; 9(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31896634

ABSTRACT

We sequenced the complete coding genome of the western equine encephalitis virus (WEEV) strain Fleming. This strain was originally isolated in 1938 from a human WEEV case.

9.
Curr Opin Virol ; 37: 91-96, 2019 08.
Article in English | MEDLINE | ID: mdl-31357141

ABSTRACT

Lassa virus is endemic in a large area of sub-Saharan Africa, and exhibits a large amount of genetic diversity. Of the four currently recognized lineages, lineages I-III circulate in Nigeria, and lineage IV circulates in Sierra Leone, Guinea, and Liberia. However, several newly detected lineages have been proposed. LASV genetic diversity may result in differences in pathogenicity or response to medical countermeasures, necessitating the testing of multiple lineages during the development of countermeasures and diagnostics. Logistical and biosafety concerns can make it difficult to obtain representative collections of divergent LASV clades for comparison studies. For example, lack of a cold chain in remote areas, or shipping restrictions on live viruses can prevent the dissemination of natural virus isolates to researchers. Reverse genetics systems that have been developed for LASV can facilitate acquisition of hard-to-obtain LASV strains and enable comprehensive development of medical countermeasures.


Subject(s)
Genetic Variation , Lassa virus/genetics , Reverse Genetics , Animals , Humans , Lassa virus/classification , Mice , RNA, Viral/genetics
10.
Lancet Infect Dis ; 19(6): 648-657, 2019 06.
Article in English | MEDLINE | ID: mdl-31000464

ABSTRACT

BACKGROUND: The real-time generation of information about pathogen genomes has become a vital goal for transmission analysis and characterisation in rapid outbreak responses. In response to the recently established genomic capacity in the Democratic Republic of the Congo, we explored the real-time generation of genomic information at the start of the 2018 Ebola virus disease (EVD) outbreak in North Kivu Province. METHODS: We used targeted-enrichment sequencing to produce two coding-complete Ebola virus genomes 5 days after declaration of the EVD outbreak in North Kivu. Subsequent sequencing efforts yielded an additional 46 genomes. Genomic information was used to assess early transmission, medical countermeasures, and evolution of Ebola virus. FINDINGS: The genomic information demonstrated that the EVD outbreak in the North Kivu and Ituri Provinces was distinct from the 2018 EVD outbreak in Équateur Province of the Democratic Republic of the Congo. Primer and probe mismatches to Ebola virus were identified in silico for all deployed diagnostic PCR assays, with the exception of the Cepheid GeneXpert GP assay. INTERPRETATION: The first two coding-complete genomes provided actionable information in real-time for the deployment of the rVSVΔG-ZEBOV-GP Ebola virus envelope glycoprotein vaccine, available therapeutics, and sequence-based diagnostic assays. Based on the mutations identified in the Ebola virus surface glycoprotein (GP12) observed in all 48 genomes, deployed monoclonal antibody therapeutics (mAb114 and ZMapp) should be efficacious against the circulating Ebola virus variant. Rapid Ebola virus genomic characterisation should be included in routine EVD outbreak response procedures to ascertain efficacy of medical countermeasures. FUNDING: Defense Biological Product Assurance Office.


Subject(s)
Antibodies, Monoclonal/genetics , Antiviral Agents/therapeutic use , Ebola Vaccines/therapeutic use , Ebolavirus/genetics , Genomics , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/epidemiology , Democratic Republic of the Congo/epidemiology , Disease Outbreaks , Humans , Medical Countermeasures , Retrospective Studies
11.
Viruses ; 10(11)2018 11 20.
Article in English | MEDLINE | ID: mdl-30463334

ABSTRACT

Lassa virus (LASV), a mammarenavirus, infects an estimated 100,000⁻300,000 individuals yearly in western Africa and frequently causes lethal disease. Currently, no LASV-specific antivirals or vaccines are commercially available for prevention or treatment of Lassa fever, the disease caused by LASV. The development of medical countermeasure screening platforms is a crucial step to yield licensable products. Using reverse genetics, we generated a recombinant wild-type LASV (rLASV-WT) and a modified version thereof encoding a cleavable green fluorescent protein (GFP) as a reporter for rapid and quantitative detection of infection (rLASV-GFP). Both rLASV-WT and wild-type LASV exhibited similar growth kinetics in cultured cells, whereas growth of rLASV-GFP was slightly impaired. GFP reporter expression by rLASV-GFP remained stable over several serial passages in Vero cells. Using two well-characterized broad-spectrum antivirals known to inhibit LASV infection, favipiravir and ribavirin, we demonstrate that rLASV-GFP is a suitable screening tool for the identification of LASV infection inhibitors. Building on these findings, we established a rLASV-GFP-based high-throughput drug discovery screen and an rLASV-GFP-based antibody neutralization assay. Both platforms, now available as a standard tool at the IRF-Frederick (an international resource), will accelerate anti-LASV medical countermeasure discovery and reduce costs of antiviral screens in maximum containment laboratories.


Subject(s)
Drug Evaluation, Preclinical/methods , Genes, Reporter , Green Fluorescent Proteins/analysis , Lassa virus/growth & development , Luminescent Agents/analysis , Neutralization Tests/methods , Staining and Labeling/methods , Animals , Antibodies, Neutralizing/immunology , Antiviral Agents/pharmacology , Chlorocebus aethiops , Fluorometry/methods , Genomic Instability , Green Fluorescent Proteins/genetics , Lassa virus/drug effects , Lassa virus/genetics , Lassa virus/immunology , Reverse Genetics , Ribavirin/pharmacology , Vero Cells
12.
Emerg Microbes Infect ; 7(1): 69, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29691373

ABSTRACT

Zika virus (ZIKV) is an emerging flavivirus that caused thousands of human infections in recent years. Compared to other human flaviviruses, ZIKV replication is not well understood. Using fluorescent, transmission electron, and focused ion beam-scanning electron microscopy, we examined ZIKV replication dynamics in Vero 76 cells and in the brains of infected laboratory mice. We observed the progressive development of a perinuclear flaviviral replication factory both in vitro and in vivo. In vitro, we illustrated the ZIKV lifecycle from particle cell entry to egress. ZIKV particles assembled and aggregated in an induced convoluted membrane structure and ZIKV strain-specific membranous vesicles. While most mature virus particles egressed via membrane budding, some particles also likely trafficked through late endosomes and egressed through membrane abscission. Interestingly, we consistently observed a novel sheet-like virus particle array consisting of a single layer of ZIKV particles. Our study further defines ZIKV replication and identifies a novel hallmark of ZIKV infection.


Subject(s)
Cell Membrane/ultrastructure , Virion/ultrastructure , Zika Virus Infection/virology , Zika Virus/chemistry , Zika Virus/ultrastructure , Animals , Brain/cytology , Brain/virology , Cell Membrane/virology , Chlorocebus aethiops , Host-Pathogen Interactions , Humans , Mice , Microscopy/instrumentation , Microscopy/methods , RNA, Viral/genetics , RNA, Viral/isolation & purification , Vero Cells , Virus Assembly , Virus Internalization , Virus Release , Virus Replication , Zika Virus/physiology , Zika Virus Infection/physiopathology
14.
PLoS One ; 13(2): e0191983, 2018.
Article in English | MEDLINE | ID: mdl-29408900

ABSTRACT

Rift Valley fever virus (RVFV) infects both ruminants and humans leading to a wide variance of pathologies dependent on host background and age. Utilizing a targeted reverse phase protein array (RPPA) to define changes in signaling cascades after in vitro infection of human cells with virulent and attenuated RVFV strains, we observed high phosphorylation of Smad transcription factors. This evolutionarily conserved family is phosphorylated by and transduces the activation of TGF-ß superfamily receptors. Moreover, we observed that phosphorylation of Smad proteins required active RVFV replication and loss of NSs impaired this activation, further corroborating the RPPA results. Gene promoter analysis of transcripts altered after RVFV infection identified 913 genes that contained a Smad-response element. Functional annotation of these potential Smad-regulated genes clustered in axonal guidance, hepatic fibrosis and cell signaling pathways involved in cellular adhesion/migration, calcium influx, and cytoskeletal reorganization. Furthermore, chromatin immunoprecipitation confirmed the presence of a Smad complex on the interleukin 1 receptor type 2 (IL1R2) promoter, which acts as a decoy receptor for IL-1 activation.


Subject(s)
Phosphoproteins/metabolism , Proteomics , Rift Valley Fever/metabolism , Smad Proteins/metabolism , Animals , Cells, Cultured , Humans , Phosphorylation , Promoter Regions, Genetic , RNA, Small Interfering/genetics , Rift Valley fever virus/genetics , Rift Valley fever virus/physiology , Smad Proteins/genetics , Virus Replication/genetics
15.
Sci Rep ; 7(1): 14385, 2017 10 30.
Article in English | MEDLINE | ID: mdl-29085037

ABSTRACT

Rift Valley fever virus (RVFV) causes major outbreaks among livestock, characterized by "abortion storms" in which spontaneous abortion occurs in almost 100% of pregnant ruminants. Humans can also become infected with mild symptoms that can progress to more severe symptoms, such as hepatitis, encephalitis, and hemorrhagic fever. The goal of this study was to use RNA-sequencing (RNA-seq) to analyze the host transcriptome in response to RVFV infection. G2/M DNA damage checkpoint, ATM signaling, mitochondrial dysfunction, regulation of the antiviral response, and integrin-linked kinase (ILK) signaling were among the top altered canonical pathways with both the attenuated MP12 strain and the fully virulent ZH548 strain. Although several mRNA transcripts were highly upregulated, an increase at the protein level was not observed for the selected genes, which was at least partially due to the NSs dependent block in mRNA export. Inhibition of ILK signaling, which is involved in cell motility and cytoskeletal reorganization, resulted in reduced RVFV replication, indicating that this pathway is important for viral replication. Overall, this is the first global transcriptomic analysis of the human host response following RVFV infection, which could give insight into novel host responses that have not yet been explored.


Subject(s)
Rift Valley Fever/genetics , Cell Culture Techniques , Cell Cycle Checkpoints , Epithelial Cells , Humans , Protein Serine-Threonine Kinases , RNA, Messenger/genetics , Rift Valley Fever/metabolism , Rift Valley fever virus/genetics , Rift Valley fever virus/pathogenicity , Sequence Analysis, RNA , Signal Transduction , Transcriptome/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/physiology
16.
Sci Rep ; 7(1): 4679, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28680057

ABSTRACT

Machupo virus (MACV) is a New World (NW) arenavirus and causative agent of Bolivian hemorrhagic fever (HF). Here, we identified a variant of MACV strain Carvallo termed Car91 that was attenuated in guinea pigs. Infection of guinea pigs with an earlier passage of Carvallo, termed Car68, resulted in a lethal disease with a 63% mortality rate. Sequencing analysis revealed that compared to Car68, Car91 had a 35 nucleotide (nt) deletion and a point mutation within the L-segment intergenic region (IGR), and three silent changes in the polymerase gene that did not impact amino acid coding. No changes were found on the S-segment. Because it was apathogenic, we determined if Car91 could protect guinea pigs against Guanarito virus (GTOV), a distantly related NW arenavirus. While naïve animals succumbed to GTOV infection, 88% of the Car91-exposed guinea pigs were protected. These findings indicate that attenuated MACV vaccines can provide heterologous protection against NW arenaviruses. The disruption in the L-segment IGR, including a single point mutant and 35 nt partial deletion, were the only major variance detected between virulent and avirulent isolates, implicating its role in attenuation. Overall, our data support the development of live-attenuated arenaviruses as broadly protective pan-arenavirus vaccines.


Subject(s)
Arenaviridae Infections/prevention & control , Arenaviruses, New World/pathogenicity , DNA, Intergenic , Sequence Analysis, RNA/methods , Vaccines, Attenuated/genetics , Animals , Arenaviruses, New World/genetics , Arenaviruses, New World/isolation & purification , Cell Line , Chlorocebus aethiops , Disease Models, Animal , Female , Guinea Pigs , Human Umbilical Vein Endothelial Cells , Humans , Point Mutation , RNA, Viral/genetics , Sequence Deletion , Vaccines, Attenuated/isolation & purification , Vero Cells , Virulence Factors/genetics
17.
Cell Host Microbe ; 20(3): 357-367, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27569558

ABSTRACT

RNA viruses exhibit a variety of genome organization strategies, including multicomponent genomes in which each segment is packaged separately. Although multicomponent genomes are common among viruses infecting plants and fungi, their prevalence among those infecting animals remains unclear. We characterize a multicomponent RNA virus isolated from mosquitoes, designated Guaico Culex virus (GCXV). GCXV belongs to a diverse clade of segmented viruses (Jingmenvirus) related to the prototypically unsegmented Flaviviridae. The GCXV genome comprises five segments, each of which appears to be separately packaged. The smallest segment is not required for replication, and its presence is variable in natural infections. We also describe a variant of Jingmen tick virus, another Jingmenvirus, sequenced from a Ugandan red colobus monkey, thus expanding the host range of this segmented and likely multicomponent virus group. Collectively, this study provides evidence for the existence of multicomponent animal viruses and their potential relevance for animal and human health.


Subject(s)
Colobus/virology , Culicidae/virology , RNA Viruses/isolation & purification , RNA Viruses/ultrastructure , Viruses/isolation & purification , Viruses/ultrastructure , Animals , Microscopy, Fluorescence , Phylogeny , RNA Viruses/classification , RNA Viruses/genetics , Viruses/classification , Viruses/genetics
18.
Cell Host Microbe ; 18(6): 659-69, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26651942

ABSTRACT

The 2013-present Western African Ebola virus disease (EVD) outbreak is the largest ever recorded with >28,000 reported cases. Ebola virus (EBOV) genome sequencing has played an important role throughout this outbreak; however, relatively few sequences have been determined from patients in Liberia, the second worst-affected country. Here, we report 140 EBOV genome sequences from the second wave of the Liberian outbreak and analyze them in combination with 782 previously published sequences from throughout the Western African outbreak. While multiple early introductions of EBOV to Liberia are evident, the majority of Liberian EVD cases are consistent with a single introduction, followed by spread and diversification within the country. Movement of the virus within Liberia was widespread, and reintroductions from Liberia served as an important source for the continuation of the already ongoing EVD outbreak in Guinea. Overall, little evidence was found for incremental adaptation of EBOV to the human host.


Subject(s)
Ebolavirus/classification , Ebolavirus/genetics , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/transmission , Cluster Analysis , Ebolavirus/isolation & purification , Genetic Variation , Genome, Viral , Genotype , Hemorrhagic Fever, Ebola/virology , Humans , Liberia/epidemiology , Molecular Epidemiology , Molecular Sequence Data , Phylogeography , Sequence Analysis, DNA , Sequence Homology
19.
Emerg Infect Dis ; 21(7): 1135-43, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26079255

ABSTRACT

To support Liberia's response to the ongoing Ebola virus (EBOV) disease epidemic in Western Africa, we established in-country advanced genomic capabilities to monitor EBOV evolution. Twenty-five EBOV genomes were sequenced at the Liberian Institute for Biomedical Research, which provided an in-depth view of EBOV diversity in Liberia during September 2014-February 2015. These sequences were consistent with a single virus introduction to Liberia; however, shared ancestry with isolates from Mali indicated at least 1 additional instance of movement into or out of Liberia. The pace of change is generally consistent with previous estimates of mutation rate. We observed 23 nonsynonymous mutations and 1 nonsense mutation. Six of these changes are within known binding sites for sequence-based EBOV medical countermeasures; however, the diagnostic and therapeutic impact of EBOV evolution within Liberia appears to be low.


Subject(s)
Ebolavirus/genetics , Hemorrhagic Fever, Ebola/virology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , DNA Mutational Analysis , Drug Resistance, Viral/genetics , Evolution, Molecular , Genes, Viral , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/epidemiology , Humans , Liberia/epidemiology
20.
Genome Announc ; 3(2)2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25908124

ABSTRACT

We obtained the complete coding genome of an eastern equine encephalitis virus (EEEV) strain, EEEV V105-00210, and the complete genome of a Venezuelan equine encephalitis virus (VEEV) strain, VEEV INH-9813. They were obtained from human cases and are proposed as reference challenge strains for vaccine and therapeutic development in animal models.

SELECTION OF CITATIONS
SEARCH DETAIL