Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 14(2)2023 02 14.
Article in English | MEDLINE | ID: mdl-36833416

ABSTRACT

Constitutive-heterochromatin placement in the genome affects chromosome structure by occupying centromeric areas and forming large blocks. To investigate the basis for heterochromatin variation in the genome, we chose a group of species with a conserved euchromatin part: the genus Martes [stone marten (M. foina, 2n = 38), sable (M. zibellina, 2n = 38), pine marten (M. martes, 2n = 38), and yellow-throated marten (M. flavigula, 2n = 40)]. We mined the stone marten genome for the most abundant tandem repeats and selected the top 11 macrosatellite repetitive sequences. Fluorescent in situ hybridization revealed distributions of the tandemly repeated sequences (macrosatellites, telomeric repeats, and ribosomal DNA). We next characterized the AT/GC content of constitutive heterochromatin by CDAG (Chromomycin A3-DAPI-after G-banding). The euchromatin conservatism was shown by comparative chromosome painting with stone marten probes in newly built maps of the sable and pine marten. Thus, for the four Martes species, we mapped three different types of tandemly repeated sequences critical for chromosome structure. Most macrosatellites are shared by the four species with individual patterns of amplification. Some macrosatellites are specific to a species, autosomes, or the X chromosome. The variation of core macrosatellites and their prevalence in a genome are responsible for the species-specific variation of the heterochromatic blocks.


Subject(s)
Carnivora , Mustelidae , Animals , Mustelidae/genetics , Heterochromatin , In Situ Hybridization, Fluorescence , Euchromatin , Carnivora/genetics , Chromosome Structures
2.
Cell Reprogram ; 23(6): 326-335, 2021 12.
Article in English | MEDLINE | ID: mdl-34788122

ABSTRACT

Induced pluripotent stem (iPS) cells have been produced just for a few species among order Carnivora: snow leopard, Bengal tiger, serval, jaguar, cat, dog, ferret, and American mink. We applied the iPS cell derivation protocol to the ringed seal (Phoca hispida) fibroblasts. The resulting cell line had the expression of pluripotency marker gene Rex1. Differentiation in embryoid body-like structures allowed us to register expression of AFP, endoderm marker, and Cdx2, trophectoderm marker, but not neuronal (ectoderm) markers. The cells readily differentiated into adipocytes and osteocytes, mesoderm cell types of origin. Transcriptome analysis allowed us to conclude that the cell line does not resemble human pluripotent cells, and, therefore, most probably is not pluripotent. Thus, we produced ringed seal multipotent stem cell line capable of differentiation into adipocytes and osteocytes.


Subject(s)
Induced Pluripotent Stem Cells , Phoca , Animals , Cell Differentiation , Cell Line , Dogs , Ferrets , Multipotent Stem Cells
3.
Cytogenet Genome Res ; 161(1-2): 32-42, 2021.
Article in English | MEDLINE | ID: mdl-33677437

ABSTRACT

Polyploid species represent a challenge for both cytogenetic and genomic studies due to their high chromosome numbers and the morphological similarity between their paralogous chromosomes. This paper describes the use of low-coverage high-throughput sequencing to identify the 14 most abundant tandemly arranged repetitive elements in the paleotetraploid genome of the crucian carp (Carassius carassius, 2n = 100). These repetitive elements were then used for molecular cytogenetic studies of a closely related functionally triploid form of the Prussian carp (Carassius gibelio, 3n = 150 + Bs) and a relatively distant diploid species, the tench (Tinca tinca, 2n = 48). According to their distribution on the chromosomes of the 3 aforementioned species, the repetitive elements here identified can be divided into 5 groups: (1) those specific to a single genomic locus in both Carassius species, despite the recent carp-specific genome duplication; (2) those located in a single genomic locus of T. tinca, but amplified in one or both Carassius species; (3) those massively amplified in the B chromosomes of C. gibelio; (4) those located in a single locus in C. gibelio, but amplified in many blocks in C. carassius; and (5) those located in multiple pericentromeric loci in both Carassius species. Our data indicate that some of the repetitive elements are highly conserved in cyprinoid species and may serve as good cytogenetic and genomic markers for discriminating paralogous chromosomes, while others are evolutionarily recent, and their amplification may be related to the last whole-genome duplication event.


Subject(s)
Carps/genetics , DNA/genetics , Ploidies , Animals , Cytogenetics , Diploidy , Female , Gene Duplication , Genome , In Situ Hybridization, Fluorescence , Karyotyping , Male , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA , Species Specificity
4.
Genes (Basel) ; 11(12)2020 12 10.
Article in English | MEDLINE | ID: mdl-33321928

ABSTRACT

Pinnipedia karyotype evolution was studied here using human, domestic dog, and stone marten whole-chromosome painting probes to obtain comparative chromosome maps among species of Odobenidae (Odobenus rosmarus), Phocidae (Phoca vitulina, Phoca largha, Phoca hispida, Pusa sibirica, Erignathus barbatus), and Otariidae (Eumetopias jubatus, Callorhinus ursinus, Phocarctos hookeri, and Arctocephalus forsteri). Structural and functional chromosomal features were assessed with telomere repeat and ribosomal-DNA probes and by CBG (C-bands revealed by barium hydroxide treatment followed by Giemsa staining) and CDAG (Chromomycin A3-DAPI after G-banding) methods. We demonstrated diversity of heterochromatin among pinniped karyotypes in terms of localization, size, and nucleotide composition. For the first time, an intrachromosomal rearrangement common for Otariidae and Odobenidae was revealed. We postulate that the order of evolutionarily conserved segments in the analyzed pinnipeds is the same as the order proposed for the ancestral Carnivora karyotype (2n = 38). The evolution of conserved genomes of pinnipeds has been accompanied by few fusion events (less than one rearrangement per 10 million years) and by novel intrachromosomal changes including the emergence of new centromeres and pericentric inversion/centromere repositioning. The observed interspecific diversity of pinniped karyotypes driven by constitutive heterochromatin variation likely has played an important role in karyotype evolution of pinnipeds, thereby contributing to the differences of pinnipeds' chromosome sets.


Subject(s)
Caniformia/genetics , Chromosomes, Mammalian/genetics , Euchromatin/genetics , Evolution, Molecular , Heterochromatin/genetics , Karyotype , Animals , Cytogenetics , Species Specificity
5.
Chromosome Res ; 26(4): 307-315, 2018 12.
Article in English | MEDLINE | ID: mdl-30443803

ABSTRACT

Сonstitutive heterochromatin areas are revealed by differential staining as C-positive chromosomal regions. These C-positive bands may greatly vary by location, size, and nucleotide composition. CBG-banding is the most commonly used method to detect structural heterochromatin in animals. The difficulty in identification of individual chromosomes represents an unresolved problem of this method as the body of the chromosome is stained uniformly and does not have banding pattern beyond C-bands. Here, we present the method that we called CDAG for sequential heterochromatin staining after differential GTG-banding. The method uses G-banding followed by heat denaturation in the presence of formamide with consecutive fluorochrome staining. The new technique is valid for the concurrent revealing of heterochromatin position due to differential banding of chromosomes and heterochromatin composition (AT-/GC-rich) in animal karyotyping.


Subject(s)
Chromosome Banding/methods , Heterochromatin/chemistry , Animals , Base Composition , Fluorescent Dyes , Formamides/pharmacology , Karyotyping , Nucleic Acid Denaturation , Staining and Labeling
6.
Genes (Basel) ; 9(8)2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30103445

ABSTRACT

B chromosomes (Bs) represent a variable addition to the main karyotype in some lineages of animals and plants. Bs accumulate through non-Mendelian inheritance and become widespread in populations. Despite the presence of multiple genes, most Bs lack specific phenotypic effects, although their influence on host genome epigenetic status and gene expression are recorded. Previously, using sequencing of isolated Bs of ruminants and rodents, we demonstrated that Bs originate as segmental duplications of specific genomic regions, and subsequently experience pseudogenization and repeat accumulation. Here, we used a similar approach to characterize Bs of the red fox (Vulpes vulpes L.) and the Chinese raccoon dog (Nyctereutes procyonoides procyonoides Gray). We confirm the previous findings of the KIT gene on Bs of both species, but demostrate an independent origin of Bs in these species, with two reused regions. Comparison of gene ensembles in Bs of canids, ruminants, and rodents once again indicates enrichment with cell-cycle genes, development-related genes, and genes functioning in the neuron synapse. The presence of B-chromosomal copies of genes involved in cell-cycle regulation and tissue differentiation may indicate importance of these genes for B chromosome establishment.

7.
Genes (Basel) ; 8(11)2017 Nov 10.
Article in English | MEDLINE | ID: mdl-29125582

ABSTRACT

Several whole genome duplication (WGD) events followed by rediploidization took place in the evolutionary history of vertebrates. Acipenserids represent a convenient model group for investigation of the consequences of WGD as their representatives underwent additional WGD events in different lineages resulting in ploidy level variation between species, and these processes are still ongoing. Earlier, we obtained a set of sterlet (Acipenser ruthenus) chromosome-specific libraries by microdissection and revealed that they painted two or four pairs of whole sterlet chromosomes, as well as additional chromosomal regions, depending on rediploidization status and chromosomal rearrangements after genome duplication. In this study, we employed next generation sequencing to estimate the content of libraries derived from different paralogous chromosomes of sterlet. For this purpose, we aligned the obtained reads to the spotted gar (Lepisosteus oculatus) reference genome to reveal syntenic regions between these two species having diverged 360 Mya. We also showed that the approach is effective for synteny prediction at various evolutionary distances and allows one to clearly distinguish paralogous chromosomes in polyploid genomes. We postulated that after the acipenserid-specific WGD sterlet karyotype underwent multiple interchromosomal rearrangements, but different chromosomes were involved in this process unequally.

8.
Genes (Basel) ; 8(9)2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28858207

ABSTRACT

The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David's deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups.

9.
BMC Evol Biol ; 17(Suppl 2): 258, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29297306

ABSTRACT

BACKGROUND: Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a "living fossil". It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. RESULTS: In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. CONCLUSIONS: This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions.


Subject(s)
Genome , Transcriptome/genetics , Whales/genetics , Animals , Gene Expression Regulation , Gene Library , Molecular Sequence Annotation , Phylogeny
10.
Chromosoma ; 125(4): 661-8, 2016 09.
Article in English | MEDLINE | ID: mdl-27411693

ABSTRACT

Acipenseriformes is an order of ray-finned fishes, comprising 27 extant species of sturgeons and paddlefishes inhabiting waters of the Northern Hemisphere. The order has a basal position within Actinopteri (ray-finned fish minus polypterids) and is characterized by many specific morphological and genomic features, including high diploid chromosome numbers, various levels of ploidy between species, unclear sex determination, and propensity to interspecific hybridization. Recent advances in molecular genetics, genomics, and comparative cytogenetics produced novel data on different aspects of acipenseriform biology, including improved phylogenetic reconstructions and better understanding of genome structure. Here, we discuss the cytogenetic and genomic traits of acipenseriforms and their connection with polyploidization and tolerance to interspecific hybridization.


Subject(s)
Fishes/genetics , Genome/genetics , Polyploidy , Sex Determination Processes/genetics , Animals , Biological Evolution , Cytogenetics , Evolution, Molecular , Karyotype
11.
Cytogenet Genome Res ; 148(1): 25-34, 2016.
Article in English | MEDLINE | ID: mdl-27088853

ABSTRACT

Cetacean karyotypes possess exceptionally stable diploid numbers and highly conserved chromosomes. To date, only toothed whales (Odontoceti) have been analyzed by comparative chromosome painting. Here, we studied the karyotype of a representative of baleen whales, the gray whale (Eschrichtius robustus, Mysticeti), by Zoo-FISH with dromedary camel and human chromosome-specific probes. We confirmed a high degree of karyotype conservation and found an identical order of syntenic segments in both branches of cetaceans. Yet, whale chromosomes harbor variable heterochromatic regions constituting up to a third of the genome due to the presence of several types of repeats. To investigate the cause of this variability, several classes of repeated DNA sequences were mapped onto chromosomes of whale species from both Mysticeti and Odontoceti. We uncovered extensive intrapopulation variability in the size of heterochromatic blocks present in homologous chromosomes among 3 individuals of the gray whale by 2-step differential chromosome staining. We show that some of the heteromorphisms observed in the gray whale karyotype are due to distinct amplification of a complex of common cetacean repeat and heavy satellite repeat on homologous autosomes. Furthermore, we demonstrate localization of the telomeric repeat in the heterochromatin of both gray and pilot whale (Globicephala melas, Odontoceti). Heterochromatic blocks in the pilot whale represent a composite of telomeric and common repeats, while heavy satellite repeat is lacking in the toothed whale consistent with previous studies.


Subject(s)
Heterochromatin/genetics , Karyotype , Physical Chromosome Mapping , Whales/genetics , Animals , Camelus/genetics , Female , Genetic Variation/genetics , Humans , In Situ Hybridization, Fluorescence , Male , Synteny , Telomere/genetics , Whales/classification , Whales, Pilot/genetics
12.
PLoS One ; 11(1): e0147647, 2016.
Article in English | MEDLINE | ID: mdl-26821159

ABSTRACT

Karyotype evolution in Carnivora is thoroughly studied by classical and molecular cytogenetics and supplemented by reconstructions of Ancestral Carnivora Karyotype (ACK). However chromosome painting information from two pinniped families (Odobenidae and Otariidae) is noticeably missing. We report on the construction of the comparative chromosome map for species from each of the three pinniped families: the walrus (Odobenus rosmarus, Odobenidae-monotypic family), near threatened Steller sea lion (Eumetopias jubatus, Otariidae) and the endemic Baikal seal (Pusa sibirica, Phocidae) using combination of human, domestic dog and stone marten whole-chromosome painting probes. The earliest karyological studies of Pinnipedia showed that pinnipeds were characterized by a pronounced karyological conservatism that is confirmed here with species from Phocidae, Otariidae and Odobenidae sharing same low number of conserved human autosomal segments (32). Chromosome painting in Pinnipedia and comparison with non-pinniped carnivore karyotypes provide strong support for refined structure of ACK with 2n = 38. Constructed comparative chromosome maps show that pinniped karyotype evolution was characterized by few tandem fusions, seemingly absent inversions and slow rate of genome rearrangements (less then one rearrangement per 10 million years). Integrative comparative analyses with published chromosome painting of Phoca vitulina revealed common cytogenetic signature for Phoca/Pusa branch and supports Phocidae and Otaroidea (Otariidae/Odobenidae) as sister groups. We revealed rearrangements specific for walrus karyotype and found the chromosomal signature linking together families Otariidae and Odobenidae. The Steller sea lion karyotype is the most conserved among three studied species and differs from the ACK by single fusion. The study underlined the strikingly slow karyotype evolution of the Pinnipedia in general and the Otariidae in particular.


Subject(s)
Sea Lions/genetics , Seals, Earless/genetics , Walruses/genetics , Animals , Carnivory , Chromosome Mapping , Chromosome Painting , DNA Probes/genetics , Evolution, Molecular , Humans , Karyotype , Male , Mustelidae/genetics
13.
Mol Cytogenet ; 8: 90, 2015.
Article in English | MEDLINE | ID: mdl-26587056

ABSTRACT

BACKGROUND: Acipenseriformes take a basal position among Actinopteri and demonstrate a striking ploidy variation among species. The sterlet (Acipenser ruthenus, Linnaeus, 1758; ARUT) is a diploid 120-chromosomal sturgeon distributed in Eurasian rivers from Danube to Enisey. Despite a high commercial value and a rapid population decline in the wild, many genomic characteristics of sterlet (as well as many other sturgeon species) have not been studied. RESULTS: Cell lines from different tissues of 12 sterlet specimens from Siberian populations were established following an optimized protocol. Conventional cytogenetic studies supplemented with molecular cytogenetic investigations on obtained fibroblast cell lines allowed a detailed description of sterlet karyotype and a precise localization of 18S/28S and 5S ribosomal clusters. Localization of sturgeon specific HindIII repetitive elements revealed an increased concentration in the pericentromeric region of the acrocentric ARUT14, while the total sterlet repetitive DNA fraction (C0t30) produced bright signals on subtelomeric segments of small chromosomal elements. Chromosome and region specific probes ARUT1p, 5, 6, 7, 8 as well as 14 anonymous small sized chromosomes (probes A-N) generated by microdissection were applied in chromosome painting experiments. According to hybridization patterns all painting probes were classified into two major groups: the first group (ARUT5, 6, 8 as well as microchromosome specific probes C, E, F, G, H, and I) painted only a single region each on sterlet metaphases, while probes of the second group (ARUT1p, 7 as well as microchromosome derived probes A, B, D, J, K, M, and N) marked two genomic segments each on different chromosomes. Similar results were obtained on male and female metaphases. CONCLUSIONS: The sterlet genome represents a complex mosaic structure and consists of diploid and tetraploid chromosome segments. This may be regarded as a transition stage from paleotetraploid (functional diploid) to diploid genome condition. Molecular cytogenetic and genomic studies of other 120- and 240-chromosomal sturgeons are needed to reconstruct genome evolution of this vertebrate group.

14.
Chromosome Res ; 19(4): 549-65, 2011 May.
Article in English | MEDLINE | ID: mdl-21559983

ABSTRACT

Glires represent a eutherian clade consisting of rodents and lagomorphs (hares, rabbits, and pikas). Chromosome evolution of Glires is known to have variable rates in different groups: from slowly evolving lagomorphs and squirrels to extremely rapidly evolving muroids. Previous interordinal homology maps between slowly evolving Glires were based on comparison with humans. Here, we used sets of chromosome-specific probes from Tamias sibiricus (Sciuridae), Castor fiber (Castoridae) and humans to study karyotypes of six ground squirrels (genera Marmota and Spermophilus) and one tree squirrel (genus Sciurus), mountain hare (genus Lepus), and rabbit (genus Oryctolagus). These data supplemented with GTG banding comparisons allowed us to build comparative chromosome maps. Our data showed the absence of previously found squirrel associations HSA 1/8 and 2/17 in the Eurasian ground squirrels--sousliks and woodchucks, and disruptions of squirrel HSA 10/13 and HSA 8/4/8/12/22 syntenies in the four Spermophilus species studied here. We found that the karyotypes of Sciuridae and Leporidae are highly conserved and close to the Rodentia ancestral karyotype, while Castoridae chromosomes underwent many more changes. We suggest that Lagomorpha and Sciuridae (in contrast to all other rodent families) should be considered as core Glires lineages, characterized by cytogenetically conserved karyotypes which contain chromosomal elements inherent to karyotype of common Glires ancestor. Our data allowed us to further refine the putative ancestral karyotypes of Rodentia. We also describe here the putative ancestral karyotypes of Glires and lagomorphs.


Subject(s)
Chromosome Painting , Evolution, Molecular , Genome/genetics , Mammals/genetics , Sequence Homology , Animals , Chromosome Banding , Chromosome Mapping , Chromosomes, Mammalian/genetics , Female , Humans , Karyotyping , Male , Rabbits
15.
J Hered ; 100 Suppl 1: S42-53, 2009.
Article in English | MEDLINE | ID: mdl-19546120

ABSTRACT

High-quality sequencing of the dog (Canis lupus familiaris) genome has enabled enormous progress in genetic mapping of canine phenotypic variation. The red fox (Vulpes vulpes), another canid species, also exhibits a wide range of variation in coat color, morphology, and behavior. Although the fox genome has not yet been sequenced, canine genomic resources have been used to construct a meiotic linkage map of the red fox genome and begin genetic mapping in foxes. However, a more detailed gene-specific comparative map between the dog and fox genomes is required to establish gene order within homologous regions of dog and fox chromosomes and to refine breakpoints between homologous chromosomes of the 2 species. In the current study, we tested whether canine-derived gene-containing bacterial artificial chromosome (BAC) clones can be routinely used to build a gene-specific map of the red fox genome. Forty canine BAC clones were mapped to the red fox genome by fluorescence in situ hybridization (FISH). Each clone was uniquely assigned to a single fox chromosome, and the locations of 38 clones agreed with cytogenetic predictions. These results clearly demonstrate the utility of FISH mapping for construction of a whole-genome gene-specific map of the red fox. The further possibility of using canine BAC clones to map genes in the American mink (Mustela vison) genome was also explored. Much lower success was obtained for this more distantly related farm-bred species, although a few BAC clones were mapped to the predicted chromosomal locations.


Subject(s)
Chromosome Mapping/veterinary , Chromosomes, Artificial, Bacterial/genetics , Dogs/genetics , Foxes/genetics , Mink/genetics , Animals , Genome , Genomics/methods , In Situ Hybridization, Fluorescence
16.
Chromosome Res ; 16(1): 129-43, 2008.
Article in English | MEDLINE | ID: mdl-18293108

ABSTRACT

Canid species (dogs and foxes) have highly rearranged karyotypes and thus represent a challenge for conventional comparative cytogenetic studies. Among them, the domestic dog is one of the best-mapped species in mammals, constituting an ideal reference genome for comparative genomic study. Here we report the results of genome-wide comparative mapping of dog chromosome-specific probes onto chromosomes of the dhole, fennec fox, and gray fox, as well as the mapping of red fox chromosome-specific probes onto chromosomes of the corsac fox. We also present an integrated comparative chromosome map between the species studied here and all canids studied previously. The integrated map demonstrates an extensive conservation of whole chromosome arms across different canid species. In addition, we have generated a comprehensive genome phylogeny for the Canidae on the basis of the chromosome rearrangements revealed by comparative painting. This genome phylogeny has provided new insights into the karyotypic relationships among the canids. Our results, together with published data, allow the formulation of a likely Canidae ancestral karyotype (CAK, 2n = 82), and reveal that at least 6-24 chromosomal fission/fusion events are needed to convert the CAK karyotype to that of the modern canids.


Subject(s)
Chromosome Painting , Dogs/genetics , Foxes/genetics , Genomics , Phylogeny , Animals , Genome , Humans , Molecular Probes/genetics
17.
Chromosome Res ; 16(2): 261-74, 2008.
Article in English | MEDLINE | ID: mdl-18266061

ABSTRACT

The number of rodent species examined by modern comparative genomic approaches, particularly chromosome painting, is limited. The use of human whole-chromosome painting probes to detect regions of homology in the karyotypes of the rodent index species, the mouse and rat, has been hindered by the highly rearranged nature of their genomes. In contrast, recent studies have demonstrated that non-murid rodents display more conserved genomes, underscoring their suitability for comparative genomic and higher-order systematic studies. Here we provide the first comparative chromosome maps between human and representative rodents of three major rodent lineages Castoridae, Pedetidae and Dipodidae. A comprehensive analysis of these data and those published for Sciuridae show (1) that Castoridae, Pedetidae and Dipodidae form a monophyletic group, and (2) that the European beaver Castor fiber (Castoridae) and the birch mouse Sicista betulina (Dipodidae) are sister species to the exclusion of the springhare Pedetes capensis (Pedetidae), thus resolving an enduring trifurcation in rodent higher-level systematics. Our results together with published data on the Sciuridae allow the formulation of a putative rodent ancestral karyotype (2n = 50) that is thought to comprise the following 26 human chromosomal segments and/or segmental associations: HSA1pq, 1q/10p, 2pq, 2q, 3a, 3b/19p, 3c/21, 4b, 5, 6, 7a, 7b/16p, 8p/4a/8p, 8q, 9/11, 10q, 12a/22a, 12b/22b, 13, 14/15, 16q/19q, 17, 18, 20, X and Y. These findings provide insights into the likely composition of the ancestral rodent karyotype and an improved understanding of placental genome evolution.


Subject(s)
Genome/physiology , In Situ Hybridization, Fluorescence/methods , Rodentia/genetics , Animals , Chromosome Banding , DNA Probes , Female , Humans , Male , Mice , Phylogeny , Rabbits , Rats , Sciuridae/genetics
18.
Chromosome Res ; 13(2): 113-22, 2005.
Article in English | MEDLINE | ID: mdl-15861301

ABSTRACT

Plant and animal karyotypes sometimes contain variable elements, that are referred to as additional or B-chromosomes. It is generally believed that B-chromosomes lack major genes and represent parasitic and selfish elements of a genome. Here we report, for the first time, the localization of a gene to B-chromosomes of mammals: red fox (Vulpes vulpes) and two subspecies of raccoon dog (Nyctereutes procyonoides). Identification of the proto-oncogene C-KIT on B-chromosomes of two Canidae species that diverged from a common ancestor more than 12.5 million years ago argues against the current view of B-chromosomes. Analyses of fox B-chromosomal C-KIT gene from a flow-sorted fox B-chromosome-specific library revealed the presence of intron-exon boundaries and high identity between sequenced regions of canine and fox B-chromosomal C-KIT copies. Identification of C-KIT gene on all B-chromosomes of two canid species provides new insight into the origin and evolution of supernumeraries and their potential role in the genome.


Subject(s)
Chromosomes, Mammalian/genetics , Foxes/genetics , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogenes/genetics , Raccoon Dogs/genetics , Animals , Chromosome Mapping , DNA Probes , Evolution, Molecular , In Situ Hybridization, Fluorescence , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...