Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(7)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511954

ABSTRACT

Simple sequence repeats (SSRs) are highly versatile markers in genetic diversity analysis and plant breeding, making them widely applicable. They hold potential in lentil (Lens culinaris) breeding for genetic diversity analysis, marker-assisted selection (MAS), and linkage mapping. However, the availability and diversity of SSR markers in lentil is limited. We used next-generation sequencing (NGS) technology to develop SSR markers in lentil. NGS allowed us to identify regions of the lentil genome that contained SSRs. Illumina Hiseq-2000 sequencing of the lentil genotype "Karacadag" resulted in 1,727,734 sequence reads comprising more than 48,390 Mb, and contigs were mined for SSRs, resulting in the identification of a total of 8697 SSR motifs. Among these, dinucleotide repeats were the most abundant (53.38%), followed by trinucleotides (30.38%), hexanucleotides (6.96%), tetranucleotides (6.59%), and pentanucleotides (3.19%). The most frequent repeat in dinucleotides was the TC (21.80%), followed by the GA (17.60%). A total of 2000 primer pairs were designed from these motifs, and 458 SSR markers were validated following their amplified PCR products. A linkage map was constructed using these new SSRs with high linkage disequilibrium (209) and previously known SSRs (11). The highest number of SSR markers (43) was obtained in LG2, while the lowest number of SSR markers (19) was obtained in LG7. The longest linkage group (LG) was LG2 (86.84 cM), whereas the shortest linkage group was LG7 (53.46 cM). The average length between markers ranged from 1.86 cM in LG1 to 2.81 cM in LG7, and the map density was 2.16 cM. The developed SSRs and created linkage map may provide useful information and offer a new library for genetic diversity analyses, linkage mapping studies, and lentil breeding programs.

2.
Plants (Basel) ; 12(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447071

ABSTRACT

Numerous studies have shown that under a limited water supply, a larger root biomass is associated with an increased above-ground biomass. Root biomass, while genetically controlled, is also greatly affected by the environment with varying plasticity levels. In this context, understanding the relationship between the biomass of shoots and roots appears prudent. In this study, we analyze this relationship in a large dataset collected from multiple experiments conducted up to different growth stages in bread wheat (Triticum aestivum L.) and its wild relatives. Four bread wheat mapping populations as well as wild and domesticated members of the Triticeae tribe were evaluated for the root and shoot biomass allocation patterns. In the analyzed dataset the root and shoot biomasses were directly related to each other, and to the heading date, and the correlation values increased in proportion to the length of an experiment. On average, 84.1% of the observed variation was explained by a positive correlation between shoot and root biomass. Scatter plots generated from 6353 data points from numerous experiments with different wheats suggest that at some point, further increases in root biomass negatively impact the shoot biomass. Based on these results, a preliminary study with different water availability scenarios and growth conditions was designed with two cultivars, Pavon 76 and Yecora Rojo. The duration of drought and water level significantly affected the root/shoot biomass allocation patterns. However, the responses of the two cultivars were quite different, suggesting that the point of diminishing returns in increasing root biomass may be different for different wheats, reinforcing the need to breed wheats for specific environmental challenges.

3.
Life (Basel) ; 12(3)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35330123

ABSTRACT

Triticum aestivum L., also known as common wheat, is affected by many biotic stresses. Root diseases are the most difficult to tackle due to the complexity of phenotypic evaluation and the lack of resistant sources compared to other biotic stress factors. Soil-borne pathogens such as the root-lesion nematodes caused by the Pratylenchus species and crown rot caused by various Fusarium species are major wheat root diseases, causing substantial yield losses globally. A set of 189 advanced spring bread wheat lines obtained from the International Maize and Wheat Improvement Center (CIMMYT) were genotyped with 4056 single nucleotide polymorphisms (SNP) markers and screened for root-lesion nematodes and crown rot resistance. Population structure revealed that the genotypes could be divided into five subpopulations. Genome-Wide Association Studies were carried out for both resistances to Pratylenchus and Fusarium species. Based on our results, 11 different SNPs on chromosomes 1A, 1B, 2A, 3A, 4A, 5B, and 5D were significantly associated with root-lesion nematode resistance. Seven markers demonstrated association with P. neglectus, while the remaining four were linked to P. thornei resistance. In the case of crown rot, eight different markers on chromosomes 1A, 2B, 3A, 4B, 5B, and 7D were associated with Fusarium crown rot resistance. Identification and screening of root diseases is a challenging task; therefore, the newly identified resistant sources/genotypes could be exploited by breeders to be incorporated in breeding programs. The use of the identified markers in marker-assisted selection could enhance the selection process and cultivar development with root-lesion nematode and crown rot resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...