Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542147

ABSTRACT

Olive growing in Croatia has a long tradition and is of great economic and social impact. The present study includes a set of 108 tree samples (88 samples corresponding to 60 presumed cultivars and 20 trees of unnamed ones) collected from 27 groves in the entire olive growing area, and is the most comprehensive survey to be conducted in Croatia. The genetic diversity, relationships, and structures of olive plants were studied using eight microsatellite loci. All loci were polymorphic and revealed a total of 90 alleles. A total of 74 different genotypes were detected that were subjected to further diversity and genetic relationship studies. The Fitch-Margoliash tree and Bayesian analysis of population structure revealed a complex relationship between the identified olive genotypes, which were clustered into three gene pools, indicating different origins of Croatian olive germplasms. Excluding the redundant germplasms, 44 different genotypes among the sampled trees of well-known cultivars and 16 new local germplasms were identified. In addition, we provide the etymology of 46 vernacular names, which confirms that the vast majority of traditional Croatian cultivars have common and widespread names. The results presented herein underline the importance of safeguarding local cultivars and conducting continuous surveys.


Subject(s)
Olea , Olea/genetics , Croatia , Bayes Theorem , Phylogeny , Genotype , Microsatellite Repeats/genetics , Genetic Variation
2.
J Agric Food Chem ; 71(42): 15701-15712, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37815987

ABSTRACT

The release of new olive cultivars with an increased squalene content in their virgin olive oil is considered an important target in olive breeding programs. In this work, the variability of the squalene content in a core collection of 36 olive cultivars was first studied, revealing two olive cultivars, 'Dokkar' and 'Klon-14', with extremely low and high squalene contents in their oils, respectively. Next, four cDNA sequences encoding squalene synthases (SQS) were cloned from olive. Sequence analysis and functional expression in bacteria confirmed that they encode squalene synthases. Transcriptional analysis in distinct olive tissues and cultivars indicated that expression levels of these four SQS genes are spatially and temporally regulated in a cultivar-dependent manner and pointed to OeSQS2 as the gene mainly involved in squalene biosynthesis in olive mesocarp and, therefore, in the olive oil. In addition, the biosynthesis of squalene appears to be transcriptionally regulated in water-stressed olive mesocarp.


Subject(s)
Olea , Olive Oil/analysis , Olea/genetics , Squalene/analysis , Plant Breeding , Plant Oils
3.
BMC Plant Biol ; 23(1): 452, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37749509

ABSTRACT

BACKGROUND: Olive is one of the most cultivated species in the Mediterranean Basin and beyond. Despite being extensively studied for its commercial relevance, the origin of cultivated olive and the history of its domestication remain open questions. Here, we present a genealogical and kinship relationships analysis by mean of chloroplast and nuclear markers of different genera, subgenus, species, subspecies, ecotypes, cultivated, ancient and wild types, which constitutes one of the most inclusive research to date on the diversity within Olea europaea species. A complete survey of the variability across the nuclear and plastid genomes of different genotypes was studied through single nucleotide polymorphisms, indels (insertions and deletions), and length variation. RESULTS: Fifty-six different chlorotypes were identified among the Oleaceae family including Olea europaea, other species and genera. The chloroplast genome evolution, within Olea europaea subspecies, probably started from subsp. cuspidata, which likely represents the ancestor of all the other subspecies and therefore of wild types and cultivars. Our study allows us to hypothesize that, inside the subspecies europaea containing cultivars and the wild types, the ancestral selection from var. sylvestris occurred both in the eastern side of the Mediterranean and in the central-western part of Basin. Moreover, it was elucidated the origin of several cultivars, which depends on the introduction of eastern cultivars, belonging to the lineage E1, followed by crossing and replacement of the autochthonous olive germplasm of central-western Mediterranean Basin. In fact, our study highlighted that two main 'founders' gave the origin to more than 60% of analyzed olive cultivars. Other secondary founders, which strongly contributed to give origin to the actual olive cultivar diversity, were already detected. CONCLUSIONS: The application of comparative genomics not only paves the way for a better understanding of the phylogenetic relationships within the Olea europaea species but also provides original insights into other elusive evolutionary processes, such as chloroplast inheritance and parentage inside olive cultivars, opening new scenarios for further research such as the association studies and breeding programs.


Subject(s)
Olea , Oleaceae , Olea/genetics , Phylogeny , Plant Breeding , Chloroplasts/genetics
4.
Front Plant Sci ; 14: 1267601, 2023.
Article in English | MEDLINE | ID: mdl-38250447

ABSTRACT

In Spain, several local studies have highlighted the likely presence of unknown olive cultivars distinct from the approximately 260 ones previously described in the literature. Furthermore, recent advancements in identification techniques have significantly enhanced in terms of efficacy and precision. This scenario motivated a new nationwide prospecting effort aimed at recovering and characterizing new cultivated germplasm using high-throughput molecular markers. In the present study, the use of 96 EST-SNP markers allowed the identification of a considerable amount of new material (173 new genotypes) coming from areas with low intensification of production in different regions of Spain. As a result, the number of distinct national genotypes documented in the World Olive Germplasm Bank of IFAPA, Córdoba (WOGBC-ESP046) increased to 427. Likewise, 65 and 24 new synonymy and homonymy cases were identified, respectively. This rise in the number of different national cultivars allowed to deepen the knowledge about the underlying genetic structure. The great genetic variability of Spanish germplasm was confirmed, and a new hot spot of diversity was identified in the northern regions of La Rioja and Aragon. Analysis of the genetic structure showed a clear separation between the germplasm of southern and northern-northeastern Spain and indicated a significantly higher level of admixture in the latter. Given the expansion of modern olive cultivation with only a few cultivars, this cryptic germplasm is in great danger of disappearing. This underlines the fact that maintaining as many cultivars as possible will increase the genetic variability of the olive gene pool to meet the future challenges of olive cultivation.

5.
Plants (Basel) ; 11(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35406901

ABSTRACT

Olive, the emblematic Mediterranean fruit crop, owns a great varietal diversity, which is maintained in ex situ field collections, such as the World Olive Germplasm Bank of Córdoba (WOGBC), Spain. Accurate identification of WOGBC, one of the world's largest collections, is essential for efficient management and use of olive germplasm. The present study is the first report of the use of a core set of 96 EST-SNP markers for the fingerprinting of 1273 accessions from 29 countries, including both field and new acquired accessions. The EST-SNP fingerprinting made possible the accurate identification of 668 different genotypes, including 148 detected among the new acquired accessions. Despite the overall high genetic diversity found at WOGBC, the EST-SNPs also revealed the presence of remarkable redundant germplasm mostly represented by synonymy cases within and between countries. This finding, together with the presence of homonymy cases, may reflect a continuous interchange of olive cultivars, as well as a common and general approach for their naming. The structure analysis revealed a certain geographic clustering of the analysed germplasm. The EST-SNP panel under study provides a powerful and accurate genotyping tool, allowing for the foundation of a common strategy for efficient safeguarding and management of olive genetic resources.

6.
Plants (Basel) ; 12(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36616284

ABSTRACT

The fruit size of a cultivated olive tree is consistently larger than its corresponding wild relatives because fruit size is one of the main traits associated with olive tree domestication. Additionally, large fruit size is one of the main objectives of modern olive breeding programs. However, as the long juvenile period is one main hindrance in classic breeding approaches, obtaining genetic markers associated with this trait is a highly desirable tool. For this reason, GWAS analysis of both genetic markers and the genes associated with fruit size determination, measured as fruit weight, was herein carried out in 50 genotypes, of which 40 corresponded to cultivated and 10 to wild olive trees. As a result, 113 genetic markers were identified, which showed a very high statistically significant correlation with fruit weight variability, p < 10−10. These genetic markers corresponded to 39 clusters of genes in linkage disequilibrium. The analysis of a segregating progeny of the cross of "Frantoio" and "Picual" cultivars allowed us to confirm 10 of the 18 analyzed clusters. The annotation of the genes in each cluster and the expression pattern of the samples taken throughout fruit development by RNAseq enabled us to suggest that some studied genes are involved in olive fruit weight determination.

7.
BMC Genomics ; 22(1): 229, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33794765

ABSTRACT

BACKGROUND: Olive orchards are threatened by a wide range of pathogens. Of these, Verticillium dahliae has been in the spotlight for its high incidence, the difficulty to control it and the few cultivars that has increased tolerance to the pathogen. Disease resistance not only depends on detection of pathogen invasion and induction of responses by the plant, but also on barriers to avoid the invasion and active resistance mechanisms constitutively expressed in the absence of the pathogen. In a previous work we found that two healthy non-infected plants from cultivars that differ in V. dahliae resistance such as 'Frantoio' (resistant) and 'Picual' (susceptible) had a different root morphology and gene expression pattern. In this work, we have addressed the issue of basal differences in the roots between Resistant and Susceptible cultivars. RESULTS: The gene expression pattern of roots from 29 olive cultivars with different degree of resistance/susceptibility to V. dahliae was analyzed by RNA-Seq. However, only the Highly Resistant and Extremely Susceptible cultivars showed significant differences in gene expression among various groups of cultivars. A set of 421 genes showing an inverse differential expression level between the Highly Resistant to Extremely Susceptible cultivars was found and analyzed. The main differences involved higher expression of a series of transcription factors and genes involved in processes of molecules importation to nucleus, plant defense genes and lower expression of root growth and development genes in Highly Resistant cultivars, while a reverse pattern in Moderately Susceptible and more pronounced in Extremely Susceptible cultivars were observed. CONCLUSION: According to the different gene expression patterns, it seems that the roots of the Extremely Susceptible cultivars focus more on growth and development, while some other functions, such as defense against pathogens, have a higher expression level in roots of Highly Resistant cultivars. Therefore, it seems that there are constitutive differences in the roots between Resistant and Susceptible cultivars, and that susceptible roots seem to provide a more suitable environment for the pathogen than the resistant ones.


Subject(s)
Olea , Verticillium , Ascomycota , Olea/genetics , Plant Diseases/genetics , Plant Roots/genetics
8.
Front Plant Sci ; 12: 653997, 2021.
Article in English | MEDLINE | ID: mdl-33763103

ABSTRACT

Fatty acid composition of olive oil has an important effect on the oil quality to such an extent that oils with a high oleic and low linoleic acid contents are preferable from a nutritional and technological point of view. In the present work, we have first studied the diversity of the fatty acid composition in a set of eighty-nine olive cultivars from the Worldwide Olive Germplasm Bank of IFAPA Cordoba (WOGBC-IFAPA), and in a core collection (Core-36), which includes 28 olive cultivars from the previously mentioned set. Our results indicate that oleic and linoleic acid contents displayed the highest degree of variability of the different fatty acids present in the olive oil of the 89 cultivars under study. In addition, the independent study of the Core-36 revealed two olive cultivars, Klon-14 and Abou Kanani, with extremely low and high linoleic acid contents, respectively. Subsequently, these two cultivars were used to investigate the specific contribution of different fatty acid desaturases to the linoleic acid content of mesocarp tissue during olive fruit development and ripening. Fatty acid desaturase gene expression levels, together with lipid analysis, suggest that not only OeFAD2-2 and OeFAD2-5 but also the different specificities of extraplastidial acyltransferase enzymes are responsible for the variability of the oleic/linoleic acid ratio in olive cultivars. All this information allows for an advancement in the knowledge of the linoleic acid biosynthesis in different olive cultivars, which can impact olive breeding programs to improve olive oil quality.

9.
Plant Genome ; 13(1): e20010, 2020 03.
Article in English | MEDLINE | ID: mdl-33016633

ABSTRACT

The primary domestication of olive (Olea europaea L.) in the Levant dates back to the Neolithic period, around 6,000-5,500 BC, as some archeological remains attest. Cultivated olive trees are reproduced clonally, with sexual crosses being the sporadic events that drive the development of new varieties. In order to determine the genomic changes which have occurred in a modern olive cultivar, the genome of the Picual cultivar, one of the most popular olive varieties, was sequenced. Additional 40 cultivated and 10 wild accessions were re-sequenced to elucidate the evolution of the olive genome during the domestication process. It was found that the genome of the 'Picual' cultivar contains 79,667 gene models, of which 78,079 were protein-coding genes and 1,588 were tRNA. Population analyses support two independent events in olive domestication, including an early possible genetic bottleneck. Despite genetic bottlenecks, cultivated accessions showed a high genetic diversity driven by the activation of transposable elements (TE). A high TE gene expression was observed in presently cultivated olives, which suggests a current activity of TEs in domesticated olives. Several TEs families were expanded in the last 5,000 or 6,000 years and produced insertions near genes that may have been involved in selected traits during domestication as reproduction, photosynthesis, seed development, and oil production. Therefore, a great genetic variability has been found in cultivated olive as a result of a significant activation of TEs during the domestication process.


Subject(s)
Olea , Domestication , Evolution, Molecular , Genomics , Olea/genetics
10.
Antioxidants (Basel) ; 9(10)2020 Oct 17.
Article in English | MEDLINE | ID: mdl-33080812

ABSTRACT

Food diversity, and in particular genetic diversity, is being lost at an alarming rate. Protection of natural areas is crucial to safeguard the world's threatened species. The Medes Islands (MI), located in the northwest Mediterranean Sea, are a protected natural reserve. Wild olive trees also known as oleasters make up part of the vegetation of the Meda Gran island. Among them, in 2012, a wild albino ivory-white olive tree with fruit was identified. Fruits were collected from this tree and their seeds were first sown in a greenhouse and then planted in an orchard for purposes of ex situ preservation. Seven out of the 78 seedling trees obtained (12%) produced ivory-white fruits. In autumn 2018, fruits from these trees were sampled. Although the fruits had low oil content, virgin olive oil with unique sensory, physicochemical, and stability characteristics was produced. With respect to the polyphenols content, oleacein was the main compound identified (373.29 ± 72.02 mg/kg) and the oleocanthal was the second most abundant phenolic compound (204.84 ± 52.58 mg/kg). Regarding pigments, samples were characterized by an intense yellow color, with 12.5 ± 4.6 mg/kg of chlorophyll and 9.2 ± 3.3 mg/kg of carotenoids. Finally, oleic acid was the main fatty acid identified. This study explored the resources of the natural habitat of the MI as a means of enrichment of olive oil diversity and authenticity of this traditional Mediterranean food.

11.
Genes (Basel) ; 11(8)2020 08 10.
Article in English | MEDLINE | ID: mdl-32785094

ABSTRACT

BACKGROUND: The species Olea europaea includes cultivated varieties (subsp. europaea var. europaea), wild plants (subsp. europaea var. sylvestris), and five other subspecies spread over almost all continents. Single nucleotide polymorphisms in the expressed sequence tag able to underline intra-species differentiation are not yet identified, beyond a few plastidial markers. METHODS: In the present work, more than 1000 transcript-specific SNP markers obtained by the genotyping of 260 individuals were studied. These genotypes included cultivated, oleasters, and samples of subspecies guanchica, and were analyzed in silico, in order to identify polymorphisms on key genes distinguishing different Olea europaea forms. RESULTS: Phylogeny inference and principal coordinate analysis allowed to detect two distinct clusters, clearly separating wilds and guanchica samples from cultivated olives, meanwhile the structure analysis made possible to differentiate these three groups. Sequences carrying the polymorphisms that distinguished wild and cultivated olives were analyzed and annotated, allowing to identify 124 candidate genes that have a functional role in flower development, stress response, or involvement in important metabolic pathways. Signatures of selection that occurred during olive domestication, were detected and reported. CONCLUSION: This deep EST-SNP analysis provided important information on the genetic and genomic diversity of the olive complex, opening new opportunities to detect gene polymorphisms with potential functional and evolutionary roles, and to apply them in genomics-assisted breeding, highlighting the importance of olive germplasm conservation.


Subject(s)
Expressed Sequence Tags , Olea/classification , Olea/genetics , Polymorphism, Single Nucleotide , Domestication , Genetic Variation , Genetics, Population , Genomics/methods , Genotype , Humans , Phylogeny , Plant Breeding
12.
Front Plant Sci ; 11: 629, 2020.
Article in English | MEDLINE | ID: mdl-32547577

ABSTRACT

Wild subspecies of Olea europaea constitute a source of genetic variability with huge potential for olive breeding to face global changes in Mediterranean-climate regions. We intend to identify wild olive genotypes with optimal adaptability to different environmental conditions to serve as a source of rootstocks and resistance genes for olive breeding. The SILVOLIVE collection includes 146 wild genotypes representative of the six O. europaea subspecies and early-generations hybrids. These genotypes came either from olive germplasm collections or from direct prospection in Spain, continental Africa and the Macaronesian archipelago. The collection was genotyped with plastid and nuclear markers, confirming the origin of the genotypes and their high genetic variability. Morphological and architectural parameters were quantified in 103 genotypes allowing the identification of three major groups of correlative traits including vigor, branching habits and the belowground-to-aboveground ratio. The occurrence of strong phenotypic variability in these traits within the germplasm collection has been shown. Furthermore, wild olive relatives are of great significance to be used as rootstocks for olive cultivation. Thus, as a proof of concept, different wild genotypes used as rootstocks were shown to regulate vigor parameters of the grafted cultivar "Picual" scion, which could improve the productivity of high-density hedgerow orchards.

13.
Sci Rep ; 9(1): 16968, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31740728

ABSTRACT

Olive is a long-living perennial species with a wide geographical distribution, showing a large genetic and phenotypic variation in its growing area. There is an urgent need to uncover how olive phenotypic traits and plasticity can change regardless of the genetic background. A two-year study was conducted, based on the analysis of fruit and oil traits of 113 cultivars from five germplasm collections established in Mediterranean Basin countries and Argentina. Fruit and oil traits plasticity, broad-sense heritability and genotype by environment interaction were estimated. From variance and heritability analyses, it was shown that fruit fresh weight was mainly under genetic control, whereas oleic/(palmitic + linoleic) acids ratio was regulated by the environment and genotype by environment interaction had the major effect on oil content. Among the studied cultivars, different level of stability was observed, which allowed ranking the cultivars based on their plasticity for oil traits. High thermal amplitude, the difference of low and high year values of temperature, negatively affected the oil content and the oleic acid percentage. Information derived from this work will help to direct the selection of cultivars with the highest global fitness averaged over the environments rather than the highest fitness in each environment separately.


Subject(s)
Olea/physiology , Olive Oil/chemistry , Argentina , Fatty Acids/analysis , Fruit/chemistry , Fruit/physiology , Genotype , Linoleic Acids/analysis , Mediterranean Region , Multifactorial Inheritance , Olea/chemistry , Olea/genetics , Olive Oil/analysis , Palmitic Acid/analysis , Temperature
14.
Plant Dis ; 103(10): 2559-2568, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31432752

ABSTRACT

Olive (Olea europaea L.) is one of the most important fruit crops in the Mediterranean Basin, because it occupies significant acreage in these countries and often has important cultural heritage and landscape value. This crop can be infected by several Meloidogyne species (M. javanica, M. arenaria, and M. incognita, among others), and only a few cultivars with some level of resistance to these nematodes have been found. Innovations in intensive olive growing using high planting densities, irrigation, and substantial amounts of fertilizers could increase the nematode population to further damaging levels. To further understand the interactions involved between olive and pathogenic nematodes and in the hope of finding solutions to the agricultural risks, this research aimed to determine the reaction of important olive cultivars in Spain and wild olives to M. javanica infection, including genotypes of the same and other O. europaea subspecies. All olive cultivars tested were good hosts for M. javanica, but high levels of nematode reproduction found in three cultivars (Gordal Sevillana, Hojiblanca, and Manzanilla de Sevilla) were substantially different. In the wild accessions, O. europaea subsp. cerasiformis (genotype W147) and O. europaea subsp. europaea var. sylvestris (genotype W224) were resistant to M. javanica at different levels, with strong resistance in W147 (reproduction factor [Rf] = 0.0003) and moderate resistance in W224 (Rf = 0.79). The defense reaction of W147 to M. javanica showed a strong increase of phenolic compounds but no hypersensitive reaction.


Subject(s)
Disease Resistance , Olea , Plant Pathology , Tylenchoidea , Animals , Disease Resistance/genetics , Genetic Variation , Genotype , Olea/parasitology , Spain , Tylenchoidea/physiology
15.
Antioxidants (Basel) ; 8(8)2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31349630

ABSTRACT

Virgin olive oil (VOO) is the main source of lipids in the Mediterranean diet and one of the main contributors to its proven protection against diseases associated with chronic inflammation states. This oil is rich in antioxidant compounds such as tocopherols, which together constitute the vitamin E stock of the oil. The purpose of the present work was to conduct a study on the diversity of the contents of vitamin E in the olive species (Olea europaea L.), and to know how the season climatic conditions and the degree of fruit ripening stage influences the final content of this vitamin in VOO. Data showed that the content of vitamin E in VOO is highly dependent on the olive cultivar, displaying a wide variability (89-1410 mg tocopherol/kg oil) in the olive species, and that is also dependent, to a lesser extent, on the crop year climate and the stage of fruit ripening. In addition, the suitability of cultivar crosses for breeding programs to obtain new cultivars with improved vitamin E content in VOO has been assessed. Our findings demonstrated that a single cross of olive cultivars may provide sufficient variability to be used in the selection of new cultivars.

16.
Sci Rep ; 9(1): 20423, 2019 12 31.
Article in English | MEDLINE | ID: mdl-31892747

ABSTRACT

The bacterial and fungal communities from the olive (Olea europaea L.) root systems have not yet been simultaneously studied. We show in this work that microbial communities from the olive root endosphere are less diverse than those from the rhizosphere. But more relevant was to unveil that olive belowground communities are mainly shaped by the genotype of the cultivar when growing under the same environmental, pedological and agronomic conditions. Furthermore, Actinophytocola, Streptomyces and Pseudonocardia are the most abundant bacterial genera in the olive root endosphere, Actinophytocola being the most prevalent genus by far. In contrast, Gp6, Gp4, Rhizobium and Sphingomonas are the main genera in the olive rhizosphere. Canalisporium, Aspergillus, Minimelanolocus and Macrophomina are the main fungal genera present in the olive root system. Interestingly enough, a large number of as yet unclassified fungal sequences (class level) were detected in the rhizosphere. From the belowground microbial profiles here reported, it can be concluded that the genus Actinophytocola may play an important role in olive adaptation to environmental stresses. Moreover, the huge unknown fungal diversity here uncovered suggests that fungi with important ecological function and biotechnological potential are yet to be identified.


Subject(s)
Microbiota , Mycobiome , Olea/microbiology , Plant Roots/microbiology , Rhizosphere , Bacteria , Fungi , Soil Microbiology
17.
Front Plant Sci ; 9: 1320, 2018.
Article in English | MEDLINE | ID: mdl-30298075

ABSTRACT

Germplasm collections are basic tools for conservation, characterization, and efficient use of olive genetic resources. The identification of the olive cultivars maintained in the collections is an important ongoing task which has been performed by both, morphological and molecular markers. In the present study, based on the sequencing results of previous genomic projects, a new set of 1,043 EST-SNP markers has been identified. In order to evaluate its discrimination capacity and utility in diversity studies, this set of markers was used in a representative number of accessions from 20 different olive growing countries and maintained at the World Olive Germplasm Collection of IFAPA Centre 'Alameda del Obispo' (Córdoba, Spain), one of the world's largest olive germplasm bank. Thus, the cultivated material included: cultivars belonging to previously defined core collections by means of SSR markers and agronomical traits, well known homonymy cases, possible redundancies previously identified in the collection, and recently introduced accessions. Marker stability was tested in repeated analyses of a selected number of accessions, as well as in different trees and accessions belonging to the same cultivar. In addition, 15 genotypes from a cross 'Picual' × 'Arbequina' cultivars from the IFAPA olive breeding program and a set of 89 wild genotypes were also included in the study. Our results indicate that, despite their relatively wide variability, the new set of EST-SNPs displayed lower levels of genetic diversity than SSRs in the set of olive core collections tested. However, the EST-SNP markers displayed consistent and reliable results from different plant material sources and plant propagation events. The EST-SNPs revealed a clear cut off between inter- and intra-cultivar variation in olive. Besides, they were able to reliably discriminate among different accessions, to detect possible homonymy cases as well as efficiently ascertain the presence of redundant germplasm in the collection. Additionally, these markers were highly transferable to the wild genotypes. These results, together with the low genotyping error rates and the easy and fully automated procedure used to get the genotyping data, validate the new set of EST-SNPs as possible markers of choice for olive cultivar identification.

18.
Front Plant Sci ; 9: 232, 2018.
Article in English | MEDLINE | ID: mdl-29535746

ABSTRACT

A wide genetic diversity has been reported for wild olives, which could be particularly interesting for the introgression of some agronomic traits and resistance to biotic and abiotic stresses in breeding programs. However, the introgression of some beneficial wild traits may be paralleled by negative effects on some other important agronomic and quality traits. From the quality point of view, virgin olive oil (VOO) from olive cultivars is highly appreciated for its fatty acid composition (high monounsaturated oleic acid content) and the presence of several minor components. However, the composition of VOO from wild origin and its comparison with VOO from olive cultivars has been scarcely studied. In this work, the variability for fruit characters (fruit weight and oil content, OC), fatty acid composition, and minor quality components (squalene, sterols and tocopherols content and composition) was studied in a set of plant materials involving three different origins: wild genotypes (n = 32), cultivars (n = 62) and genotypes belonging to cultivar × wild progenies (n = 62). As expected, values for fruit size and OC in wild olives were lower than those obtained in cultivated materials, with intermediate values for cultivar × wild progenies. Wild olives showed a remarkably higher C16:0 percentage and tocopherol content in comparison to the cultivars. Contrarily, lower C18:1 percentage, squalene and sterol content were found in the wild genotypes, while no clear differences were found among the different plant materials regarding composition of the tocopherol and phytosterol fractions. Some common highly significant correlations among components of the same chemical family were found in all groups of plant materials. However, some other correlations were specific for one of the groups. The results of the study suggested that the use of wild germplasm in olive breeding programs will not have a negative impact on fatty acid composition, tocopherol content, and tocopherol and phytosterol profiles provided that selection for these compounds is conducted from early generations. Important traits such as tocopherol content could be even improved by using wild parents.

19.
Molecules ; 22(1)2017 Jan 14.
Article in English | MEDLINE | ID: mdl-28098834

ABSTRACT

Virgin olive oil (VOO) is the only food product requiring official sensory analysis to be classified in commercial categories, in which the evaluation of the aroma plays a very important role. The selection of parents, with the aim of obtaining new cultivars with improved oil aroma, is of paramount importance in olive breeding programs. We have assessed the volatile fraction by headspace-solid-phase microextraction/gas chromatography-mass spectrometry-flame ionization detection (HS-SPME/GC-MS-FID) and the deduced aroma properties of VOO from a core set of olive cultivars (Core-36) which possesses most of the genetic diversity found in the World Olive Germplasm Collection (IFAPA Alameda del Obispo) located in Cordoba, Spain. The VOO volatile fractions of Core-36 cultivars display a high level of variability. It is mostly made of compounds produced from polyunsaturated fatty acids through the lipoxygenase pathway, which confirms to be a general characteristic of the olive species (Olea europaea L.). The main group of volatile compounds in the oils was six straight-chain carbon compounds derived from linolenic acid, some of them being the main contributors to the aroma of the olive oils according to their odor activity values (OAV). The high level of variability found for the volatile fraction of the oils from Core-36 and, therefore, for the aroma odor notes, suggest that this core set may be a very useful tool for the choice of optimal parents in olive breeding programs in order to raise new cultivars with improved VOO aroma.


Subject(s)
Fatty Acids, Unsaturated/isolation & purification , Odorants/analysis , Olea/chemistry , Olive Oil/chemistry , Volatile Organic Compounds/isolation & purification , alpha-Linolenic Acid/isolation & purification , Flame Ionization , Gas Chromatography-Mass Spectrometry , Genetic Variation , Olea/genetics , Plant Breeding , Solid Phase Microextraction/methods , Spain
20.
DNA Res ; 20(1): 93-108, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23297299

ABSTRACT

Olive breeding programmes are focused on selecting for traits as short juvenile period, plant architecture suited for mechanical harvest, or oil characteristics, including fatty acid composition, phenolic, and volatile compounds to suit new markets. Understanding the molecular basis of these characteristics and improving the efficiency of such breeding programmes require the development of genomic information and tools. However, despite its economic relevance, genomic information on olive or closely related species is still scarce. We have applied Sanger and 454 pyrosequencing technologies to generate close to 2 million reads from 12 cDNA libraries obtained from the Picual, Arbequina, and Lechin de Sevilla cultivars and seedlings from a segregating progeny of a Picual × Arbequina cross. The libraries include fruit mesocarp and seeds at three relevant developmental stages, young stems and leaves, active juvenile and adult buds as well as dormant buds, and juvenile and adult roots. The reads were assembled by library or tissue and then assembled together into 81 020 unigenes with an average size of 496 bases. Here, we report their assembly and their functional annotation.


Subject(s)
Genome, Plant , Molecular Sequence Annotation , Olea/genetics , Transcriptome , Breeding , Databases, Genetic , Expressed Sequence Tags , Fruit/chemistry , Gene Library , Olive Oil , Plant Oils/chemistry , Seeds/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...