Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(8): eabq0619, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36812310

ABSTRACT

The predatory deltaproteobacterium Myxococcus xanthus uses a helically-trafficked motor at bacterial focal-adhesion (bFA) sites to power gliding motility. Using total internal reflection fluorescence and force microscopies, we identify the von Willebrand A domain-containing outer-membrane (OM) lipoprotein CglB as an essential substratum-coupling adhesin of the gliding transducer (Glt) machinery at bFAs. Biochemical and genetic analyses reveal that CglB localizes to the cell surface independently of the Glt apparatus; once there, it is recruited by the OM module of the gliding machinery, a heteroligomeric complex containing the integral OM ß barrels GltA, GltB, and GltH, as well as the OM protein GltC and OM lipoprotein GltK. This Glt OM platform mediates the cell-surface accessibility and retention of CglB by the Glt apparatus. Together, these data suggest that the gliding complex promotes regulated surface exposure of CglB at bFAs, thus explaining the manner by which contractile forces exerted by inner-membrane motors are transduced across the cell envelope to the substratum.


Subject(s)
Myxococcales , Myxococcales/metabolism , Focal Adhesions/metabolism , Adhesins, Bacterial , Bacterial Adhesion , Lipoproteins , Bacterial Proteins/metabolism
2.
Mol Microbiol ; 116(4): 1151-1172, 2021 10.
Article in English | MEDLINE | ID: mdl-34455651

ABSTRACT

Exopolysaccharide (EPS) layers on the bacterial cell surface are key determinants of biofilm establishment and maintenance, leading to the formation of higher-order 3D structures that confer numerous survival benefits to a cell community. In addition to a specific cell-associated EPS glycocalyx, we recently revealed that the social δ-proteobacterium Myxococcus xanthus secretes a novel biosurfactant polysaccharide (BPS) to the extracellular milieu. Together, secretion of the two polymers (EPS and BPS) is required for type IV pilus (T4P)-dependent swarm expansion via spatio-specific biofilm expression profiles. Thus the synergy between EPS and BPS secretion somehow modulates the multicellular lifecycle of M. xanthus. Herein, we demonstrate that BPS secretion functionally alters the EPS glycocalyx via destabilization of the latter, fundamentally changing the characteristics of the cell surface. This impacts motility behaviors at the single-cell level and the aggregative capacity of cells in groups via cell-surface EPS fibril formation as well as T4P production, stability, and positioning. These changes modulate the structure of swarm biofilms via cell layering, likely contributing to the formation of internal swarm polysaccharide architecture. Together, these data reveal the manner by which the combined secretion of two distinct polymers induces single-cell changes that modulate swarm biofilm communities.


Subject(s)
Biofilms , Fimbriae, Bacterial/metabolism , Glycocalyx/metabolism , Myxococcus xanthus/metabolism , Polysaccharides, Bacterial/metabolism , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Myxococcus xanthus/growth & development
3.
Biophys J ; 104(12): 2607-11, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23790368

ABSTRACT

In rod-shaped bacteria, cell morphology is correlated with the replication rate. For a given species, cells that replicate faster are longer and have less cross-linked cell walls. Here, we propose a simple mechanochemical model that explains the dependence of cell length and cross-linking on the replication rate. Our model shows good agreement with existing experimental data and provides further evidence that cell wall synthesis is mediated by multienzyme complexes; however, our results suggest that these synthesis complexes only mediate glycan insertion and cross-link severing, whereas recross-linking is performed independently.


Subject(s)
Bacteria/cytology , Cell Growth Processes , DNA Replication , Models, Biological , Bacteria/metabolism , Bacterial Physiological Phenomena , Cell Wall/metabolism , Elasticity
SELECTION OF CITATIONS
SEARCH DETAIL
...