Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 342: 118259, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37311349

ABSTRACT

The wastewater generated from citric acid production has a high organic loading content. The treatment and reuse of citric acid wastewater with high organic loading become extremely important. In this study, the performance of calcium hydroxide (Ca(OH)2) precipitation as a low-cost and environmentally friendly pre-treatment method and aerobic membrane bioreactor (MBR) combined treatment system was investigated for the treatment of citric acid (CA) wastewater. At the first step, optimization parameters such as agitation speed (100, 150, 200 rpm), temperature (30, 50, 70 °C), and reaction time (2, 4, 6 h) for Ca(OH)2 precipitation as a pre-treatment method were investigated using response surface methodology (RSM) to achieve maximum chemical oxygen demand (COD) removal. Experimental sets were designed using Box-Behnken Design. As a result of pre-treatment with Ca(OH)2 precipitation, a COD removal efficiency of 97.3% was obtained. Then, pre-treated CA wastewater was fed continuously to the MBR process for 10 days, which was the second stage of the combined process. As a result of the MBR process, 92.0% COD removal efficiency was obtained for 24 h HRT and 10 days SRT. In total, 99.8% COD removal efficiency was obtained when combined process was used and COD concentration decreased from 52,000-114 mg/L. For the treatment and reuse of wastewater from citric acid production, Ca(OH)2 precipitation and MBR combined treatment systems demonstrated an effective strategy.


Subject(s)
Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Bioreactors , Membranes , Chemical Precipitation
2.
Environ Res ; 225: 115498, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36804319

ABSTRACT

Phosphorus (P) problem worries the whole world due to the increasing demand for finite and non-renewable natural phosphate resources and the inadequacy of sustainable phosphate production technologies. In this study, bio-acidification processes using waste sludge and food waste for simultaneous sustainable phosphate release and biogas production were investigated. Response surface methodology (RSM) was used for bio-acidification optimization. High performance was achieved with the addition of 10% FW and a temperature of 45 °C, which provided 5.30 pH and 371 mg/L P release for 10 days. A total of 196 mL of cumulative biogas was produced. Using food waste potentially reduces operating costs, eliminating the need for external chemical additions for pH control. Also, this approach offers benefits such as waste management, recovery of valuable resources, cost reduction, and environmental friendly.


Subject(s)
Phosphates , Refuse Disposal , Fermentation , Anaerobiosis , Bioreactors , Food , Biofuels , Sewage , Methane
3.
Chemosphere ; 308(Pt 2): 136216, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36075362

ABSTRACT

In this study, the electrooxidation (EO) and membrane processes were used for chemical oxygen demand (COD) and total phenol (TPh) removal from wet scrubber wastewater (WSW). EO experiments were carried out using Al, Fe, SS, Ti, graphite, active carbon cloth electrodes and Box-Behnken design were used for optimization of maximum COD and TPh removal efficiency. Moreover, membrane filtration experiments were conducted to EO process using nanofiltration (NF270) and reverse osmosis membranes (SW30 and BW30). The maximum COD (55%) and TPh (50%) removal efficiency was achieved at pH of 8, 150 A/m2 current density, and 180 min reaction time in EO process. Membrane filtration results showed that COD removal efficiency was the highest for SW30 membrane (95.18%) compared to BW30 (91.15%) and NF270 (80.11%) membranes. TPh removal efficiency in the NF270, BW30, and SW30 membranes was 27.08%, 96.06%, and 98.02%, respectively. The effect of microbial cell viability of the raw and treated wet scrubber wastewater after electrooxidation and membrane filtration was also investigated using E. coli. In addition to these, biofilm inhibition of the raw wet scrubber wastewater and the treated WSW after EO and membrane filtration were tested and the highest biofilm inhibition was found as 76.43% and 72.58% against S. aureus and P. aeruginosa, respectively, in 1/20 diluted samples of the raw WSW. This study suggests that the integrated process using EO and pressure-driven membrane methods are an efficient strategy for COD and TPh removal from WSW.


Subject(s)
Graphite , Water Pollutants, Chemical , Water Purification , Biological Oxygen Demand Analysis , Electrodes , Escherichia coli , Filtration , Industrial Waste/analysis , Phenol , Phenols , Staphylococcus aureus , Waste Disposal, Fluid/methods , Wastewater , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL