Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(18): 8051, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38655685

ABSTRACT

Correction for 'Simple synthetic access to [Au(IBiox)Cl] complexes' by Ekaterina A. Martynova et al., Dalton Trans., 2023, 52, 7558-7563, https://doi.org/10.1039/D3DT01357J.

2.
Chem Sci ; 15(12): 4571-4580, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516071

ABSTRACT

Energy transfer (EnT) photocatalysis has emerged as a valuable tool for constructing complex organic scaffolds via [2 + 2]-cycloaddition reactions. Herein, we present the use of [Au(SIPr)(Cbz)] as a sensitizer for the [2 + 2]-cycloaddition of coumarins and unactivated alkenes. Widely used in EnT catalysis, iridium and organic sensitizers proved less efficient under the examined catalytic conditions. The developed protocol permits the synthesis of cyclobutane-fused chromanones from readily available starting materials. A wide range of alkenes and substituted coumarins, including naturally occurring compounds, were reacted under mild conditions leading to structurally complex products with good functional group tolerance. Mechanistic studies reveal a previously overlooked reaction pathway for energy transfer catalysis involving coumarins.

3.
J Am Chem Soc ; 146(12): 8659-8667, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38407928

ABSTRACT

The solid-state synthesis of single-crystalline organic polymers, having functional properties, remains an attractive and developing research area in polymer chemistry and materials science. However, light-triggered topochemical synthesis of crystalline polymers comprising an organoboron backbone has not yet been reported. Here, we describe an intriguing example of single-crystal-to-single-crystal (SCSC) rapid photosynthesis (occurs on a seconds-scale) of two structurally different linear organoboron polymers, driven by environmentally sustainable visible/sun light, obtained from the same monomer molecule. A newly designed Lewis acid-base type molecular B ← N organoboron adduct (consisting of an organoboron core and naphthylvinylpyridine ligands) crystallizes in two solid-state forms featuring the same chemical structure but different 3D structural topologies, namely, monomers 1 and 2. The solvate molecule-free crystals of 1 undergo topochemical photopolymerization via an unusual olefin-naphthyl ring [2 + 2] cyclization to yield the single crystalline [3]-ladderane polymer 1P growing along the B ← N linkages, accompanied by instantaneous and violent macroscopic mechanical motions or photosalient effects (such as bending-reshaping and jumping motions). In contrast, visible light-harvesting single crystals of 2 quantitatively polymerize to a B ← N bond-stabilized polymer 2P in a SCSC fashion owing to the rapid [2 + 2] cycloaddition reaction among olefin double bonds. Such olefin bonds in the crystals of 2 are suitably preorganized for photoreaction due to the presence of solvate molecules in the crystal packing. Single crystals of 2 also show photodynamic jumping motions - in response to visible light but in a relatively slower fashion than the crystals of 1. In addition to SCSC topochemical polymerization and dynamic motions, both monomer crystals and their single-crystalline polymers feature green emissive and short-lived room-temperature phosphorescence properties upon excitation with visible-light wavelength.

4.
Chemistry ; 29(40): e202301259, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37196153

ABSTRACT

Herein, we report the catalytic activity of a series of platinum(II) pre-catalysts, bearing N-heterocyclic carbene (NHC) ligands, in the alkene hydrosilylation reaction. Their structural and electronic properties are fully investigated using X-ray diffraction analysis and nuclear magnetic resonance spectroscopy (NMR). Next, our study presents a structure-activity relationship within this group of pre-catalysts and gives mechanistic insights into the catalyst activation step. An exceptional catalytic performance of one of the complexes is observed, reaching a turnover number (TON) of 970 000 and a turnover frequency (TOF) of 40 417 h-1 at 1 ppm catalyst loading. Finally, an attractive solvent-free and open-to-air alkene hydrosilylation protocol, featuring efficient platinum removal (reduction of residual Pt from 582 ppm to 5.8 ppm), is disclosed.

5.
Angew Chem Int Ed Engl ; 62(28): e202304722, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37171876

ABSTRACT

In the quest for essential energy solutions towards an ecological friendly future, the transformation of visible light/solar energy into mechanical motions in metal-free luminescent crystals offers a sustainable choice of smart materials for lightweight actuating, and all-organic electronic devices. Such green energy-triggered photodynamic motions with room temperature phosphorescence (RTP) emission in molecular crystals have not been reported yet. Here, we demonstrate three new stoichiometrically different Lewis acid-base molecular organoboron crystals (PS1, PS2, and PS3), which exhibit rapid photosalient effects (ballistic splitting, moving, and jumping) under both ultraviolet (UV) and visible light associated with quantitative single-crystal-to-single-crystal (SCSC) [2+2] cycloaddition of preorganized olefins. Furthermore, these systems respond to sunlight and mobile (white) flashlight with a complete SCSC transformation in a relatively slow fashion. Remarkably, all PS1, PS2, and PS3 crystals display visible light-promoted dynamic green RTP as their emission peaks promptly blue-shift, due to instantaneous photomechanical effects. Time-dependent structural mapping of intermediate photoproducts during fast SCSC [2+2] photoreaction, by X-ray photodiffraction, reveals a rationale for the origin of these photodynamic motions associated with rapid topochemical transformations. The reported light-driven behavior (mechanical motions, dynamic phosphorescence, and topochemical reactivity), is considered advantageous for the strategic design of stimuli-responsive multi-functional crystalline materials.

6.
Dalton Trans ; 52(22): 7558-7563, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37191083

ABSTRACT

Green and sustainable access to chiral and achiral gold-IBiox complexes is reported. The gold complexes were synthesized using a simple, air-tolerant, weak base protocol carried out in a green solvent. Their catalytic activity was examined in the hydroamination of alkynes. The steric protection afforded the gold center by these ligands was quantified using the %Vbur model and compared with the most commonly encountered NHCs.

7.
Dalton Trans ; 52(12): 3690-3698, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36853241

ABSTRACT

The synthesis of novel phosphine palladium PEPPSI and dimer complexes bearing RuPhos, SPhos and XPhos phosphines is reported. The crystal structures of XPhos Pd PEPPSI with pyridine, SPhos Pd PEPPSI with 3-chloropyridine as throw-away ligands and the RuPhos palladium dimer were obtained and compared with previously reported congeners. The catalytic activity of these novel complexes was examined via a C-N coupling reaction involving 4-chloroanisole and morpholine. RuPhos complex 2b proved most active, leading to 97% yield with a low (0.2 mol%) catalyst loading, while phosphine palladium dimers showed significantly lower catalytic activity. However, the addition of 3-pentanone as an activator/stabilizer significantly improved the yields of phosphine dimers and PEPPSI complexes when the reactions were performed in THF.

8.
J Am Chem Soc ; 144(48): 22051-22058, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36417296

ABSTRACT

Photoluminescent molecular crystals integrated with the ability to transform light energy into macroscopic mechanical motions are a promising choice of materials for both actuating and photonic devices. However, such dynamic photomechanical effects, based on molecular organoboron compounds as well as phosphorescent crystalline materials, are not yet known. Here we present an intriguing example of photomechanical molecular single crystals of a newly synthesized organoboron containing Lewis acid-base molecular adduct (BN1, substituted triphenylboroxine and 1,2-di(4-pyridyl)ethylene) having a capsule shape molecular geometry. The single crystals of BN1 under UV light exhibit controllable rapid bending-shape recovery, delamination, violent splitting-jumping, and expanding features. The detailed structural investigation by single-crystal X-ray diffraction and 1H NMR spectroscopy reveals that the photosalient behavior of the BN1 single crystals is driven by a crystal-to-crystal [2 + 2] cycloaddition reaction, supported by four donor-acceptor type B←N bonds. The instant photomechanical reaction in the BN1 crystals occurs under UV on account of sudden release of stress associated with the strained molecular geometry, significant solid-state molecular movements (supramolecular change), and cleavage of half intermolecular B←N linkages to result in a complete photodimerized single-crystalline product via the existence of two other intermediate photoproducts. In addition, the BN1 crystals display short-lived room temperature phosphorescence, and the photodynamic events are accompanied by the enhancement of their phosphorescence intensity to yield the photoproduct. Interestingly, the molecular crystals of the final photoproduct polymerize at ambient conditions when recrystallized from the solution forming a 2D supramolecular crystalline polymer stabilized by the retention of all B←N coordination modes.


Subject(s)
Cycloaddition Reaction
9.
Chem Sci ; 13(23): 6852-6857, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35774168

ABSTRACT

We present the use of gold sensitizers [Au(SIPr)(Cbz)] (PhotAu 1) and [Au(IPr)(Cbz)] (PhotAu 2) as attractive alternatives to state-of-the-art iridium-based systems. These novel photocatalysts are deployed in [2 + 2] cycloadditions of diallyl ethers and N-tosylamides. The reactions proceed in short reaction times and in environmentally friendly solvents. [Au(SIPr)Cbz] and [Au(IPr)(Cbz)] have higher triplet energy (E T) values (66.6 and 66.3 kcal mol-1, respectively) compared to commonly used iridium photosensitizers. These E T values permit the use of these gold complexes as sensitizers enabling energy transfer catalysis involving unprotected indole derivatives, a substrate class previously inaccessible with state-of-the-art Ir photocatalysts. The photosynthesis of unprotected tetracyclic spiroindolines via intramolecular [2 + 2] cycloaddition using our simple mononuclear gold sensitizer is readily achieved. Mechanistic studies support the involvement of triplet-triplet energy transfer (TTEnT) for both [2 + 2] photocycloadditions.

10.
Dalton Trans ; 51(16): 6204-6211, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35357386

ABSTRACT

A sustainable and facile weak-base synthetic route to platinum N-heterocyclic carbene (NHC) complexes is disclosed. The mechanism of this reaction is also elucidated via experimental and computational investigations. This straightforward protocol is then used for the synthesis of novel Pt(II)-NHC complexes and its utility is further explored to access key Pt(0)-NHC precatalysts.

11.
Dalton Trans ; 50(27): 9491-9499, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34254628

ABSTRACT

The synthesis and characterization of novel palladium complexes bearing N-heterocyclic carbenes (NHCs) and 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane (CAP) are reported. These organometallic complexes can be easily obtained using two different synthetic strategies that involve either the substitution of the pyridine ligand from trans-[Pd(NHC)(Py)Cl2] or by simple addition of the CAP ligand to dimeric species [Pd(NHC)Cl2]2. The mixed NHC/CAP complexes were tested as pre-catalysts in the Buchwald-Hartwig aryl amination coupling, showing good catalytic activity, especially in the case of cis-[Pd(IPr)(CAP)Cl2].

12.
Dalton Trans ; 49(41): 14673-14679, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33064119

ABSTRACT

A general, user-friendly synthetic route to [Pt(NHC)(L)Cl2] and [Pt(NHC)(dvtms)] (L = DMS, Py; DMS = dimethyl sulfide, dvtms = divinyltetramethylsiloxane, Py = pyridine) complexes has been developed. The procedure is applicable to a wide range of ligands and enables facile synthetic access to key Pt(0)- and Pt(ii)-NHC complexes used in hydrosilylation catalysis.

13.
Chem Commun (Camb) ; 56(44): 5953-5956, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32347246

ABSTRACT

The reaction mechanism leading to the formation of cross-coupling palladium pre-catalysts of the PEPPSI family was investigated. Two intermediates were isolated and proved to be both suitable synthons to the pre-catalysts, with one permitting the design of a novel and greener user-friendly synthetic route. In light of this mechanistic understanding, the traditional one-pot method was shown to be possible using stoichiometric amounts of throw-away ligand, which represents a considerable synthetic improvement over the wasteful "in pyridine" approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...