Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 7420, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29743487

ABSTRACT

Oxidative phosphorylation (OXPHOS) generates ROS as a byproduct of mitochondrial complex I activity. ROS-detoxifying enzymes are made available through the activation of their antioxidant response elements (ARE) in their gene promoters. NRF2 binds to AREs and induces this anti-oxidant response. We show that cells from multiple origins performing OXPHOS induced NRF2 expression and its transcriptional activity. The NRF2 promoter contains MEF2 binding sites and the MAPK ERK5 induced MEF2-dependent NRF2 expression. Blocking OXPHOS in a mouse model decreased Erk5 and Nrf2 expression. Furthermore, fibroblasts derived from patients with mitochondrial disorders also showed low expression of ERK5 and NRF2 mRNAs. Notably, in cells lacking functional mitochondrial complex I activity OXPHOS did not induce ERK5 expression and failed to generate this anti-oxidant response. Complex I activity induces ERK5 expression through fumarate accumulation. Eukaryotic cells have evolved a genetic program to prevent oxidative stress directly linked to OXPHOS and not requiring ROS.


Subject(s)
Antioxidant Response Elements , Electron Transport Complex I/metabolism , Mitochondria/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , Signal Transduction , Active Transport, Cell Nucleus , Animals , Cell Line, Tumor , Cell Nucleus/metabolism , Gene Expression Regulation , Humans , Male , Mice , NF-E2-Related Factor 2/metabolism , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism
2.
EBioMedicine ; 3: 43-53, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26870816

ABSTRACT

Tumor cell metabolism is altered during leukemogenesis. Cells performing oxidative phosphorylation (OXPHOS) generate reactive oxygen species (ROS) through mitochondrial activity. To limit the deleterious effects of excess ROS, certain gene promoters contain antioxidant response elements (ARE), e.g. the genes NQO-1 and HO-1. ROS induces conformational changes in KEAP1 and releases NRF2, which activates AREs. We show in vitro and in vivo that OXPHOS induces, both in primary leukemic cells and cell lines, de novo expression of NQO-1 and HO-1 and also the MAPK ERK5 and decreases KEAP1 mRNA. ERK5 activates the transcription factor MEF2, which binds to the promoter of the miR-23a-27a-24-2 cluster. Newly generated miR-23a destabilizes KEAP1 mRNA by binding to its 3'UTR. Lower KEAP1 levels increase the basal expression of the NRF2-dependent genes NQO-1 and HO-1. Hence, leukemic cells performing OXPHOS, independently of de novo ROS production, generate an antioxidant response to protect themselves from ROS.


Subject(s)
Antioxidants/metabolism , Leukemia/metabolism , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism , 3' Untranslated Regions , Antioxidant Response Elements , Cell Line, Tumor , Gene Expression Regulation, Leukemic , Humans , Intracellular Signaling Peptides and Proteins/genetics , Kelch-Like ECH-Associated Protein 1 , Leukemia/genetics , MicroRNAs/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , Models, Biological , Organ Specificity/genetics , Oxidative Stress , RNA Interference , RNA, Messenger/chemistry , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...