Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 120(1): 14-32, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21177772

ABSTRACT

Cardiotoxicity, also referred to as drug-induced cardiac injury, is an issue associated with the use of some small-molecule kinase inhibitors and antibody-based therapies targeting signaling pathways in cancer. Although these drugs have had a major impact on cancer patient survival, data have implicated kinase-targeting agents such as sunitinib, imatinib, trastuzumab, and sorafenib in adversely affecting cardiac function in a subset of treated individuals. In many cases, adverse cardiac events in the clinic were not anticipated based on preclinical safety evaluation of the molecule. In order to support the development of efficacious and safe kinase inhibitors for the treatment of cancer and other indications, new preclinical approaches and screens are required to predict clinical cardiotoxicity. Laboratory investigations into the underlying molecular mechanisms of heart toxicity induced by these molecules have identified potentially common themes including mitochondrial perturbation and modulation of adenosine monophosphate-activated protein kinase activity. Studies characterizing cardiac-specific kinase knockout mouse models have developed our understanding of the homeostatic role of some of these signaling mediators in the heart. Therefore, when considering kinases as potential future targets or when examining secondary pharmacological interactions of novel kinase inhibitors, these models may help to inform us of the potential adverse cardiac effects in the clinic.


Subject(s)
Antineoplastic Agents/adverse effects , Heart Diseases/chemically induced , Neoplasms/drug therapy , Phosphotransferases/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Clinical Trials as Topic , Drug Evaluation, Preclinical , Humans , Neoplasms/enzymology
2.
Anal Biochem ; 384(2): 279-87, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-18938125

ABSTRACT

Recombinant expression of the aryl hydrocarbon receptor (AhR) yields small amounts of ligand-binding-competent AhR. Therefore, Spodoptera frugiperda (Sf9) cells and baculovirus have been evaluated for high-level and functional expression of AhR. Rat and human AhR were expressed as soluble protein in significant amounts. Expression of ligand-binding-competent AhR was sensitive to the protein concentration of Sf9 extract, and coexpression of the chaperone p23 failed to affect the yield of functional ligand-binding AhR. The expression system yielded high levels of functional protein, with the ligand-binding capacity (Bmax) typically 20-fold higher than that obtained with rat liver cytosol. Quantitative estimates of the ligand-binding affinity of human and rat AhR were obtained; the Kd for recombinant rat AhR was indistinguishable from that of native rat AhR, thereby validating the expression system as a faithful model for native AhR. The human AhR bound TCDD with significantly lower affinity than the rat AhR. These findings demonstrate high-level expression of ligand-binding-competent AhR, and sufficient AhR for quantitative analysis of ligand binding.


Subject(s)
Receptors, Aryl Hydrocarbon/metabolism , Recombinant Proteins/metabolism , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Binding Sites , Humans , Ligands , Rats , Rats, Wistar , Receptors, Aryl Hydrocarbon/genetics , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL