Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Front Immunol ; 13: 1029269, 2022.
Article in English | MEDLINE | ID: mdl-36405739

ABSTRACT

Colorectal cancer is the third most diagnosed cancer and the second leading cause of cancer mortality worldwide, highlighting an urgent need for new therapeutic options and combination strategies for patients. The orchestration of potent T cell responses against human cancers is necessary for effective antitumour immunity. However, regression of a limited number of cancers has been induced by immune checkpoint inhibitors, T cell engagers (TCEs) and/or oncolytic viruses. Although one TCE has been FDA-approved for the treatment of hematological malignancies, many challenges exist for the treatment of solid cancers. Here, we show that TCEs targeting CEACAM5 and CD3 stimulate robust activation of CD4 and CD8-positive T cells in in vitro co-culture models with colorectal cancer cells, but in vivo efficacy is hindered by a lack of TCE retention in the tumour microenvironment and short TCE half-life, as demonstrated by HiBiT bioluminescent TCE-tagging technology. To overcome these limitations, we engineered Bispecific Engager Viruses, or BEVirs, a novel tumour-targeted vaccinia virus platform for intra-tumour delivery of these immunomodulatory molecules. We characterized virus-mediated TCE-secretion, TCE specificity and functionality from infected colorectal cancer cells and patient tumour samples, as well as TCE cytotoxicity in spheroid models, in the presence and absence of T cells. Importantly, we show regression of colorectal tumours in both syngeneic and xenograft mouse models. Our data suggest that a different profile of cytokines may contribute to the pro-inflammatory and immune effects driven by T cells in the tumour microenvironment to provide long-lasting immunity and abscopal effects. We establish combination regimens with immune checkpoint inhibitors for aggressive colorectal peritoneal metastases. We also observe a significant reduction in lung metastases of colorectal tumours through intravenous delivery of our oncolytic virus driven T-cell based combination immunotherapy to target colorectal tumours and FAP-positive stromal cells or CTLA4-positive Treg cells in the tumour microenvironment. In summary, we devised a novel combination strategy for the treatment of colorectal cancers using oncolytic vaccinia virus to enhance immune-payload delivery and boost T cell responses within tumours.


Subject(s)
Colorectal Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Mice , Animals , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Vaccinia virus , Disease Models, Animal , Colorectal Neoplasms/therapy , Tumor Microenvironment
3.
Biochem Biophys Res Commun ; 526(3): 641-646, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32248971

ABSTRACT

Oncolytic viruses (OVs) are a class of biotherapeutics that are currently being explored for the treatment of cancer. While showing promise in several pre-clinical and clinical studies, systemic delivery of these anti-cancer agents is hampered by inefficient tumor targeting and a host immune system that is highly evolved to detect and neutralize pathogens. To shield the virus from immune recognition and destruction, the use of cells as delivery vehicles has been explored for the systemic delivery of OVs. Though several types of cell carriers are able to protect OVs during intravenous delivery, many still lack the ability to specifically home to or accumulate within the tumor microenvironment. Overall, OV-based therapeutics could benefit from tumor targeting strategies to maximize tumor-specific delivery and minimize infection of off-target tissues. In the current study, we examine magnetic targeting as a strategy to improve OV infection of tumor cells in vitro. We found that magnetic targeting of magnetically-labeled VSV particles or VSV-infected cell carriers resulted in increased infection and killing of tumor cells. Furthermore, this enhanced infection of target tumor cells was observed even in the presence of virus-specific neutralizing antibodies. Overall, our findings suggest that magnetic targeting strategies can improve the infection of tumor cells and may be a viable strategy to improve the tumor-targeted delivery of oncolytic VSV-based therapeutics.


Subject(s)
Drug Delivery Systems , Magnetics , Neoplasms/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/physiology , Animals , Antibodies, Neutralizing/immunology , Cell Line , Drosophila/cytology , Drug Delivery Systems/methods , Magnetic Phenomena , Magnetics/methods , Mice , Neoplasms/immunology , Oncolytic Viruses/immunology
4.
Sci Rep ; 9(1): 1865, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30755678

ABSTRACT

The use of oncolytic viruses (OVs) for cancer treatment is emerging as a successful strategy that combines the direct, targeted killing of the cancer with the induction of a long-lasting anti-tumor immune response. Using multiple aggressive murine models of triple-negative breast cancer, we have recently demonstrated that the early administration of oncolytic Maraba virus (MRB) prior to surgical resection of the primary tumor is sufficient to minimize the metastatic burden, protect against tumor rechallenge, cure a fraction of the mice and sensitize refractory tumors to immune checkpoint blockade without the need for further treatment. Here, we apply our surgical model to other OVs: Vesicular stomatitis virus (VSV), Adenovirus (Ad), Reovirus (Reo) and Herpes simplex virus (HSV) and show that all of the tested OVs could positively change the outcome of the treated animals. The growth of the primary and secondary tumors was differently affected by the various OVs and most of the viruses conferred survival benefits in this neoadjuvant setting despite the absence of direct treatment following rechallenge. This study establishes that OV-therapy confers long-term protection when administered in the pre-operative window of opportunity.


Subject(s)
Mammary Neoplasms, Experimental/prevention & control , Neoadjuvant Therapy/methods , Oncolytic Virotherapy/methods , Adenoviridae , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Chlorocebus aethiops , Disease Models, Animal , Female , HEK293 Cells , Humans , Mammary Neoplasms, Experimental/therapy , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Oncolytic Viruses , Preoperative Period , Reoviridae , Simplexvirus , Vero Cells , Vesiculovirus
5.
PLoS Pathog ; 14(8): e1007264, 2018 08.
Article in English | MEDLINE | ID: mdl-30138450

ABSTRACT

Herpes Simplex Virus 1 (HSV1) is amongst the most clinically advanced oncolytic virus platforms. However, efficient and sustained viral replication within tumours is limiting. Rapamycin can stimulate HSV1 replication in cancer cells, but active-site dual mTORC1 and mTORC2 (mammalian target of rapamycin complex 1 and 2) inhibitors (asTORi) were shown to suppress the virus in normal cells. Surprisingly, using the infected cell protein 0 (ICP0)-deleted HSV1 (HSV1-dICP0), we found that asTORi markedly augment infection in cancer cells and a mouse mammary cancer xenograft. Mechanistically, asTORi repressed mRNA translation in normal cells, resulting in defective antiviral response but also inhibition of HSV1-dICP0 replication. asTORi also reduced antiviral response in cancer cells, however in contrast to normal cells, transformed cells and cells transduced to elevate the expression of eukaryotic initiation factor 4E (eIF4E) or to silence the repressors eIF4E binding proteins (4E-BPs), selectively maintained HSV1-dICP0 protein synthesis during asTORi treatment, ultimately supporting increased viral replication. Our data show that altered eIF4E/4E-BPs expression can act to promote HSV1-dICP0 infection under prolonged mTOR inhibition. Thus, pharmacoviral combination of asTORi and HSV1 can target cancer cells displaying dysregulated eIF4E/4E-BPs axis.


Subject(s)
Herpes Simplex/pathology , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/genetics , Immediate-Early Proteins/genetics , Neoplasms/virology , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Catalytic Domain/drug effects , Cell Cycle Proteins , Cells, Cultured , Chlorocebus aethiops , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Herpes Simplex/complications , Herpes Simplex/genetics , Humans , Immediate-Early Proteins/deficiency , Mice , Neoplasms/complications , Neoplasms/genetics , Neoplasms/pathology , Organisms, Genetically Modified , Phosphoproteins/genetics , Phosphoproteins/metabolism , Signal Transduction/genetics , TOR Serine-Threonine Kinases/chemistry , Ubiquitin-Protein Ligases/deficiency , Vero Cells
6.
Mol Ther ; 26(6): 1414-1422, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29703699

ABSTRACT

Over the last 60 years an eclectic collection of microbes has been tested in a variety of pre-clinical models as anti-cancer agents. At the forefront of this research are a number of virus-based platforms that have shown exciting activity in a variety of pre-clinical models and are collectively referred to as oncolytic viruses. Our true understanding of the potential and limitations of this therapeutic modality has been substantially advanced through clinical studies carried out over the last 25 years. Perhaps not surprising, as with all other cancer therapeutics, it has become clear that current oncolytic virus therapeutics on their own are unlikely to be effective in the majority of patients. The greatest therapeutic gains will therefore be made through thoughtful combination strategies built upon an understanding of cancer biology.


Subject(s)
Combined Modality Therapy/methods , Neoplasms/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/physiology , Animals , Humans , Immunotherapy/methods
7.
Sci Transl Med ; 10(422)2018 01 03.
Article in English | MEDLINE | ID: mdl-29298865

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive disease for which treatment options are limited and associated with severe toxicities. Immunotherapeutic approaches like immune checkpoint inhibitors (ICIs) are a potential strategy, but clinical trials have demonstrated limited success in this patient cohort. Clinical studies using ICIs have revealed that patients with preexisting anticancer immunity are the most responsive. Given that oncolytic viruses (OVs) induce antitumor immunity, we investigated their use as an ICI-sensitizing approach. Using a therapeutic model that mimics the course of treatment for women with newly diagnosed TNBC, we demonstrate that early OV treatment coupled with surgical resection provides long-term benefits. OV therapy sensitizes otherwise refractory TNBC to immune checkpoint blockade, preventing relapse in most of the treated animals. We suggest that OV therapy in combination with immune checkpoint blockade warrants testing as a neoadjuvant treatment option in the window of opportunity between TNBC diagnosis and surgical resection.


Subject(s)
Oncolytic Virotherapy/methods , Triple Negative Breast Neoplasms/therapy , Female , Humans , Neoadjuvant Therapy/methods , Oncolytic Viruses/physiology
8.
Breast Cancer Res ; 18(1): 83, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27503504

ABSTRACT

BACKGROUND: Breast cancer is the most common malignant disease amongst Western women. The lack of treatment options for patients with chemotherapy-resistant or recurrent cancers is pushing the field toward the rapid development of novel therapies. The use of oncolytic viruses is a promising approach for the treatment of disseminated diseases like breast cancer, with the first candidate recently approved by the Food and Drug Administration for use in patients. In this report, we demonstrate the compatibility of oncolytic virotherapy and chemotherapy using various murine breast cancer models. This one-two punch has been explored in the past by several groups with different viruses and drugs and was shown to be a successful approach. Our strategy is to combine Paclitaxel, one of the most common drugs used to treat patients with breast cancer, and the oncolytic Rhabdovirus Maraba-MG1, a clinical trial candidate in a study currently recruiting patients with late-stage metastatic cancer. METHODS: We used the EMT6, 4 T1 and E0771 murine breast cancer models to evaluate in vitro and in vivo the effects of co-treatment with MG1 and Paclitaxel. Treatment-induced cytotoxicity was assessed and plaque assays, flow cytometry, microscopy and immunocytochemistry analysis were performed to quantify virus production and transgene expression. Orthotopically implanted tumors were measured during and after treatment to evaluate efficacy and Kaplan-Meier survival curves were generated. RESULTS: Our data demonstrate not only the compatibility of the treatments, but also their synergistic cytopathic activity. With Paclitaxel, EMT6 and 4 T1 tumors demonstrated increased virus production both in vitro and in vivo. Our results also show that Paclitaxel does not impair the safety profile of the virus treatment. Importantly, when combined, MG1 and the drug controlled tumor growth and prolonged survival. CONCLUSIONS: The combination of MG1 and Paclitaxel improved efficacy in all of the breast cancer models we tested and thus is a promising alternative approach for the treatment of patients with refractory breast cancer. Our strategy has potential for rapid translation to the clinic, given the current clinical status of both agents.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Breast Neoplasms/therapy , Oncolytic Virotherapy , Oncolytic Viruses , Paclitaxel/therapeutic use , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Combined Modality Therapy , Disease Models, Animal , Female , Humans , Interferon-beta/pharmacology , Mice , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Paclitaxel/administration & dosage , Tumor Burden/drug effects , Virus Replication , Xenograft Model Antitumor Assays
9.
Mol Ther Oncolytics ; 3: 16001, 2016.
Article in English | MEDLINE | ID: mdl-27119116

ABSTRACT

Oncolytic viruses are known to stimulate the antitumor immune response by specifically replicating in tumor cells. This is believed to be an important aspect of the durable responses observed in some patients and the field is rapidly moving toward immunotherapy. As a further means to engage the immune system, we engineered a virus, vesicular stomatitis virus (VSV), to encode the proinflammatory cytokine interferon-γ. We used the 4T1 mammary adenocarcinoma as well as other murine tumor models to characterize immune responses in tumor-bearing animals generated by treatment with our viruses. The interferon-γ-encoding virus demonstrated greater activation of dendritic cells and drove a more profound secretion of proinflammatory cytokines compared to the parental virus. From a therapeutic point of view, the interferon-γ virus slowed tumor growth, minimized lung tumors, and prolonged survival in several murine tumor models. The improved efficacy was lost in immunocompromized animals; hence the mechanism appears to be T-cell-mediated. Taken together, these results demonstrate the ability of oncolytic viruses to act as immune stimulators to drive antitumor immunity as well as their potential for targeted gene therapy.

10.
ILAR J ; 57(1): 73-85, 2016.
Article in English | MEDLINE | ID: mdl-27034397

ABSTRACT

The preclinical optimization and validation of novel treatments for cancer therapy requires the use of laboratory animals. Although in vitro experiments using tumor cell lines and ex vivo treatment of patient tumor samples provide a remarkable first-line tool for the initial study of tumoricidal potential, tumor-bearing animals remain the primary option to study delivery, efficacy, and safety of therapies in the context of a complete tumor microenvironment and functional immune system. In this review, we will describe the use of murine tumor models for oncolytic virotherapy using vesicular stomatitis virus. We will discuss studies using immunocompetent and immunodeficient models with respect to toxicity and therapeutic treatments, as well as the various techniques and tools available to study cancer therapy with Rhabdoviruses.


Subject(s)
Oncolytic Virotherapy/methods , Animals , Mice , Neoplasms/therapy , Neoplasms/virology , Vesicular stomatitis Indiana virus/physiology , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...