Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Cureus ; 14(11): e30967, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36465200

ABSTRACT

A spinal cord stimulator (SCS) is an intervention that has become increasingly popular due to its efficacy in treating pain. With the increasing number of SCSs implanted annually, there has been an equal increase in complications, which include infections. We present a patient who underwent an uncomplicated permanent placement of SCS and later developed worsening back pain, weakness, and fever after a mechanical fall and was subsequently found to have vertebral osteomyelitis without an identifiable infection source. While no source or definitive pathogen was discovered, if there is a concern for osteomyelitis radiographically, even in an uncommon situation when medical workup returns inconclusive, explant of the SCS is warranted.

2.
Cureus ; 14(9): e29665, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36321019

ABSTRACT

Spinal cord stimulators (SCS) have been an invaluable resource in treating chronic pain pathologies such as failed back surgery syndrome, complex regional pain syndrome, neuropathic pain, and leg ischemia. Post-dural puncture headaches (PDPH) are a common phenomenon that happens when the dura is compromised. It has been seen with permanent SCS placement, but less commonly reported with SCS trail leads. We present a case of a patient who developed PDPH symptoms, not after initial trial leads placement but upon their removal. This case not only illustrates that dural compromise can occur when the placement of the leads is correct with confirmatory imaging, but also the leads themselves can contribute to masking the defect.

3.
Am J Hum Genet ; 109(6): 1153-1174, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35659930

ABSTRACT

BRCA1 is a high-risk susceptibility gene for breast and ovarian cancer. Pathogenic protein-truncating variants are scattered across the open reading frame, but all known missense substitutions that are pathogenic because of missense dysfunction are located in either the amino-terminal RING domain or the carboxy-terminal BRCT domain. Heterodimerization of the BRCA1 and BARD1 RING domains is a molecularly defined obligate activity. Hence, we tested every BRCA1 RING domain missense substitution that can be created by a single nucleotide change for heterodimerization with BARD1 in a mammalian two-hybrid assay. Downstream of the laboratory assay, we addressed three additional challenges: assay calibration, validation thereof, and integration of the calibrated results with other available data, such as computational evidence and patient/population observational data to achieve clinically applicable classification. Overall, we found that 15%-20% of BRCA1 RING domain missense substitutions are pathogenic. Using a Bayesian point system for data integration and variant classification, we achieved clinical classification of 89% of observed missense substitutions. Moreover, among missense substitutions not present in the human observational data used here, we find an additional 45 with concordant computational and functional assay evidence in favor of pathogenicity plus 223 with concordant evidence in favor of benignity; these are particularly likely to be classified as likely pathogenic and likely benign, respectively, once human observational data become available.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Animals , BRCA1 Protein/genetics , Bayes Theorem , Breast Neoplasms/genetics , Female , Humans , Mammals , Mutation, Missense/genetics , Ovarian Neoplasms/genetics , Protein Domains
4.
Mol Genet Genomic Med ; 8(12): e1532, 2020 12.
Article in English | MEDLINE | ID: mdl-33118316

ABSTRACT

PURPOSE: While familial aggregation of colorectal cancer (CRC) is recognized, the majority of the germline predisposition factors remain unidentified, and many high-risk CRC pedigrees remain unexplained by known risk variants. Fanconi Anemia genes have been recognized to be associated with cancer risk. Notably, FANCM (OMIM 609644) variants have been reported to confer risk for CRC and breast cancer. METHODS: Exome sequencing of CRC-affected cousins in a set of 47 independent extended high-risk CRC pedigrees identified a candidate set of rare, shared variants. Variants were tested for association with risk in 744 Utah CRC cases and 1525 controls, and for segregation with CRC in affected relatives. RESULTS: A FANCM stopgain variant was observed in two CRC-affected cousin pairs, each from an independent Utah high-risk pedigree, and yielded a nonsignificant, but elevated OR = 2.05 in a set of Utah cases and controls. Segregation of the variant to other related CRC-affected cases was observed in the two extended pedigrees. CONCLUSION: A rare stopgain variant in FANCM (rs144567652) that is recognized as a breast cancer predisposition variant, and that has previously been proposed, but not confirmed, as a CRC predisposition variant, is validated here as a risk factor for familial CRC.


Subject(s)
Colorectal Neoplasms/genetics , DNA Helicases/genetics , Polymorphism, Single Nucleotide , Humans , Mutation , Pedigree
5.
BMC Cancer ; 18(1): 697, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29945567

ABSTRACT

BACKGROUND: Genes associated with hereditary breast and ovarian cancer (HBOC) and colorectal cancer (CRC) predisposition have been shown to play a role in pancreatic cancer susceptibility. Growing evidence suggests that pancreatic cancer may be useful as a sentinel cancer to identify families that could benefit from HBOC or CRC surveillance, but to date pancreatic cancer is only considered an indication for genetic testing in the context of additional family history. METHODS: Preliminary data generated at the Huntsman Cancer Hospital (HCH) included variants identified on a custom 34-gene panel or 59-gene panel including both known HBOC and CRC genes for respective sets of 66 and 147 pancreatic cancer cases, unselected for family history. Given the strength of preliminary data and corresponding literature, 61 sequential pancreatic cancer cases underwent a custom 14-gene clinical panel. Sequencing data from HCH pancreatic cancer cases, pancreatic cancer cases of the Cancer Genome Atlas (TCGA), and an unselected pancreatic cancer screen from the Mayo Clinic were combined in a meta-analysis to estimate the proportion of carriers with pathogenic and high probability of pathogenic variants of uncertain significance (HiP-VUS). RESULTS: Approximately 8.6% of unselected pancreatic cancer cases at the HCH carried a variant with potential HBOC or CRC screening recommendations. A meta-analysis of unselected pancreatic cancer cases revealed that approximately 11.5% carry a pathogenic variant or HiP-VUS. CONCLUSION: With the inclusion of both HBOC and CRC susceptibility genes in a panel test, unselected pancreatic cancer cases act as a useful sentinel cancer to identify asymptomatic at-risk relatives who could benefit from relevant HBOC and CRC surveillance measures.


Subject(s)
Breast Neoplasms/genetics , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Ovarian Neoplasms/genetics , Pancreatic Neoplasms/genetics , Adult , Aged , Female , Genetic Testing , Humans , Male , Middle Aged
6.
Leukemia ; 32(11): 2399-2411, 2018 11.
Article in English | MEDLINE | ID: mdl-29749399

ABSTRACT

Tumor necrosis factor alpha (TNF) is increased in myelofibrosis (MF) and promotes survival of malignant over normal cells. The mechanisms altering TNF responsiveness in MF cells are unknown. We show that the proportion of marrow (BM) cells expressing TNF is increased in MF compared to controls, with the largest differential in primitive cells. Blockade of TNF receptor 2 (TNFR2), but not TNFR1, selectively inhibited colony formation by MF CD34+ and mouse JAK2V617F progenitor cells. Microarray of mouse MPN revealed reduced expression of X-linked inhibitor of apoptosis (Xiap) and mitogen-activated protein kinase 8 (Mapk8) in JAK2V617F relative to JAK2WT cells, which were normalized by TNFR2 but not TNFR1 blockade. XIAP and MAPK8 were also reduced in MF CD34+ cells compared to normal BM, and their ectopic expression induced apoptosis. Unlike XIAP, expression of cellular IAP (cIAP) protein was increased in MF CD34+ cells. Consistent with cIAP's role in NF-κB activation, TNF-induced NF-κB activity was higher in MF vs. normal BM CD34+ cells. This suggests that JAK2V617F reprograms TNF response toward survival by downregulating XIAP and MAPK8 through TNFR2. Our results reveal an unexpected pro-apoptotic role for XIAP in MF and identify TNFR2 as a key mediator of TNF-induced clonal expansion.


Subject(s)
Autocrine Communication/physiology , Receptors, Tumor Necrosis Factor, Type II/metabolism , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/metabolism , Animals , Antigens, CD/metabolism , Apoptosis/physiology , Humans , Janus Kinase 2/metabolism , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism
7.
Bull Environ Contam Toxicol ; 100(1): 69-75, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29279993

ABSTRACT

The acute toxicity of silver to Ceriodaphnia dubia was investigated in laboratory reconstituted waters as well as in natural waters and reconstituted waters with natural organic matter. The water quality characteristics of the laboratory reconstituted waters were systematically varied. The parameters that demonstrated an ability to mitigate the acute toxic effects of silver were chloride, sodium, organic carbon, and chromium reducible sulfide. Factors that did not have a consistent effect on the acute toxicity of silver to C. dubia, at least over the range of conditions tested, included hardness, alkalinity, and pH. The biotic ligand model was calibrated to the observed test results and found to be of use in quantifying the effect of changing water quality characteristics on silver bioavailability and toxicity. The model generally predicted silver toxicity within a factor of two and should be useful in modifying water quality criteria.


Subject(s)
Cladocera/physiology , Fresh Water/chemistry , Silver/toxicity , Water Pollutants, Chemical/toxicity , Animals , Chlorides , Cladocera/drug effects , Sodium , Toxicity Tests, Acute , Water Quality/standards
8.
Genes Cancer ; 6(3-4): 129-43, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26000096

ABSTRACT

In Ewing sarcoma, NKX2-2 is a critical activated target of the oncogenic transcription factor EWS/FLI that is required for transformation. However, its biological function in this malignancy is unknown. Here we provide evidence that NKX2-2 mediates the EWS/FLI-controlled block of mesenchymal features. Transcriptome-wide RNA sequencing revealed that NKX2-2 represses cell adhesion and extracellular matrix organization genes. NKX2-2-depleted cells form more focal adhesions and organized actin stress fibers, and spread over a wider area-hallmarks of mesenchymally derived cells. Furthermore, NKX2-2 represses the actin-stabilizing protein zyxin, suggesting that these morphological changes are attributable to zyxin de-repression. In addition, NKX2-2-knockdown cells display marked increases in migration and substrate adhesion. However, only part of the EWS/FLI phenotype is NKX2-2-dependent; consequently, NKX2-2 is insufficient to rescue EWS/FLI repression of mesenchymalization. Strikingly, we found that EWS/FLI-and NKX22-repressed genes are activated by ZEB2, which was previously shown to block Ewing sarcoma epithelialization. Together, these data support an emerging theme wherein Ewing sarcoma cells highly express transcription factors that maintain an undifferentiated state. Importantly, co-opting epithelial and mesenchymal traits by Ewing sarcoma cells may explain how the primary tumor grows rapidly while also "passively" metastasizing, without the need for transitions toward differentiated states, as in carcinomas.

9.
Cancer Discov ; 4(7): 804-15, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25050558

ABSTRACT

UNLABELLED: Approximately half of the familial aggregation of breast cancer remains unexplained. A multiple-case breast cancer family exome-sequencing study identified three likely pathogenic mutations in RINT1 (NM_021930.4) not present in public sequencing databases: RINT1 c.343C>T (p.Q115X), c.1132_1134del (p.M378del), and c.1207G>T (p.D403Y). On the basis of this finding, a population-based case-control mutation-screening study was conducted that identified 29 carriers of rare (minor allele frequency < 0.5%), likely pathogenic variants: 23 in 1,313 early-onset breast cancer cases and six in 1,123 frequency-matched controls [OR, 3.24; 95% confidence interval (CI), 1.29-8.17; P = 0.013]. RINT1 mutation screening of probands from 798 multiple-case breast cancer families identified four additional carriers of rare genetic variants. Analysis of the incidence of first primary cancers in families of women carrying RINT1 mutations estimated that carriers were at increased risk of Lynch syndrome-spectrum cancers [standardized incidence ratio (SIR), 3.35; 95% CI, 1.7-6.0; P = 0.005], particularly for relatives diagnosed with cancer under the age of 60 years (SIR, 10.9; 95% CI, 4.7-21; P = 0.0003). SIGNIFICANCE: The work described in this study adds RINT1 to the growing list of genes in which rare sequence variants are associated with intermediate levels of breast cancer risk. Given that RINT1 is also associated with a spectrum of cancers with mismatch repair defects, these findings have clinical applications and raise interesting biological questions.


Subject(s)
Breast Neoplasms/genetics , Cell Cycle Proteins/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Case-Control Studies , Exome , Female , Genetic Predisposition to Disease , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Pedigree , Sequence Analysis, DNA
10.
Pain Physician ; 17(3): 235-46, 2014.
Article in English | MEDLINE | ID: mdl-24850105

ABSTRACT

BACKGROUND: Spinal cord stimulation is an intervention that has become increasingly popular due to the growing body of literature showing its effectiveness in treating pain and the reversible nature of the treatment with implant removal. It is currently approved by the FDA for chronic pain of the trunk and limbs, intractable low back pain, leg pain, and pain from failed back surgery syndrome. In Europe, it has additional approval for refractory angina pectoris and peripheral limb ischemia. OBJECTIVE: This narrative review presents the current evidence supporting the use of spinal cord stimulation for the approved indications and also discusses some emerging neuromodulation technologies that may potentially address pain conditions that traditional spinal cord stimulation has difficulty addressing. STUDY DESIGN: Narrative review. RESULTS: Spinal cord stimulation has been reported to be superior to conservative medical management and reoperation when dealing with pain from failed back surgery syndrome. It has also demonstrated clinical benefit in complex regional pain syndrome, critical limb ischemia, and refractory angina pectoris. Furthermore, several cost analysis studies have demonstrated that spinal cord stimulation is cost effective for these approved conditions. Despite the lack of a comprehensive mechanism, the technology and the complexity in which spinal cord stimulation is being utilized is growing. Newer devices are targeting axial low back pain and foot pain, areas that have been reported to be more difficult to treat with traditional spinal cord stimulation. Percutaneous hybrid paddle leads, peripheral nerve field stimulation, nerve root stimulation, dorsal root ganglion, and high frequency stimulation are actively being refined to address axial low back pain and foot pain. High frequency stimulation is unique in that it provides paresthesia free analgesia by stimulating beyond the physiologic frequency range. The preliminary results have been mixed and a large randomized control trial is underway to evaluate the future of this technology. Other emerging technologies, including dorsal root ganglion stimulation and hybrid leads, also show some promising preliminary results in non-randomized observational trials. LIMITATION: This review is a primer and not an exhaustive review for the current evidence supporting the use of spinal cord stimulation and precursory discussion of emerging neuromodulation technologies. This review does not address peripheral nerve stimulation and focuses mainly on spinal cord stimulation and touches on peripheral nerve field stimulation. CONCLUSIONS: Spinal cord stimulation has demonstrated clinical efficacy in randomized control trials for the approved indications. In addition, several open label observational studies on peripheral nerve field stimulation, hybrid leads, dorsal root ganglion stimulation, and high frequency stimulation show some promising results. However, large randomized control trials demonstrating clear clinical benefit are needed to gain evidence based support for their use.


Subject(s)
Chronic Pain/therapy , Spinal Cord Stimulation/methods , Humans , Spinal Cord Stimulation/instrumentation , Spinal Cord Stimulation/statistics & numerical data
11.
J Biol Chem ; 289(10): 6709-6726, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24407293

ABSTRACT

Huntington disease (HD) is an inherited neurodegenerative disease caused by a CAG expansion in the HTT gene. Using yeast two-hybrid methods, we identified a large set of proteins that interact with huntingtin (HTT)-interacting proteins. This network, composed of HTT-interacting proteins (HIPs) and proteins interacting with these primary nodes, contains 3235 interactions among 2141 highly interconnected proteins. Analysis of functional annotations of these proteins indicates that primary and secondary HIPs are enriched in pathways implicated in HD, including mammalian target of rapamycin, Rho GTPase signaling, and oxidative stress response. To validate roles for HIPs in mutant HTT toxicity, we show that the Rho GTPase signaling components, BAIAP2, EZR, PIK3R1, PAK2, and RAC1, are modifiers of mutant HTT toxicity. We also demonstrate that Htt co-localizes with BAIAP2 in filopodia and that mutant HTT interferes with filopodial dynamics. These data indicate that HTT is involved directly in membrane dynamics, cell attachment, and motility. Furthermore, they implicate dysregulation in these pathways as pathological mechanisms in HD.


Subject(s)
Huntington Disease/metabolism , Nerve Tissue Proteins/metabolism , rho GTP-Binding Proteins/metabolism , Animals , HEK293 Cells , Humans , Huntingtin Protein , Huntington Disease/genetics , Metabolic Networks and Pathways , Mice , NIH 3T3 Cells , Nerve Tissue Proteins/genetics , Pseudopodia/metabolism
12.
Genes Cancer ; 4(5-6): 213-23, 2013 May.
Article in English | MEDLINE | ID: mdl-24069508

ABSTRACT

The gene encoding EWS (EWSR1) is involved in various chromosomal translocations that cause the production of oncoproteins responsible for multiple cancers including Ewing sarcoma, myxoid liposarcoma, soft tissue clear cell sarcoma, and desmoplastic small round cell sarcoma. It is well known that EWS fuses to FLI to create EWS/FLI, which is the abnormal transcription factor that drives tumor development in Ewing sarcoma. However, the role of wild-type EWS in Ewing sarcoma pathogenesis remains unclear. In the current study, we identified EWS-regulated genes and cellular processes through RNA interference combined with RNA sequencing and functional annotation analyses. Interestingly, we found that EWS and EWS/FLI co-regulate a significant cluster of genes, indicating an interplay between the 2 proteins in regulating cellular functions. We found that among the EWS-down-regulated genes are a subset of neuronal genes that contain binding sites for the RE1-silencing transcription factor (REST or neuron-restrictive silencer factor [NRSF]), neuron-restrictive silencer element (NRSE), suggesting a cooperative interaction between REST and EWS in gene regulation. Co-immunoprecipitation analysis demonstrated that EWS interacts directly with REST. Genome-wide binding analysis showed that EWS binds chromatin at or near NRSE. Furthermore, functional studies revealed that both EWS and REST inhibit neuronal phenotype development and oncogenic transformation in Ewing sarcoma cells. Our data implicate an important role of EWS in the development of Ewing sarcoma phenotype and highlight a potential value in modulating EWS function in the treatment of Ewing sarcoma and other EWS translocation-based cancers.

13.
Mol Cell Biol ; 33(22): 4448-60, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24043308

ABSTRACT

Oncogenic transformation in Ewing sarcoma is caused by EWS/FLI, an aberrant transcription factor fusion oncogene. Glioma-associated oncogene homolog 1 (GLI1) is a critical target gene activated by EWS/FLI, but the mechanism by which GLI1 contributes to the transformed phenotype of Ewing sarcoma was unknown. In this work, we identify keratin 17 (KRT17) as a direct downstream target gene upregulated by GLI1. We demonstrate that KRT17 regulates cellular adhesion by activating AKT/PKB (protein kinase B) signaling. In addition, KRT17 is necessary for oncogenic transformation in Ewing sarcoma and accounts for much of the GLI1-mediated transformation function but via a mechanism independent of AKT signaling. Taken together, our data reveal previously unknown molecular functions for a cytoplasmic intermediate filament protein, KRT17, in coordinating EWS/FLI- and GLI1-mediated oncogenic transformation and cellular adhesion in Ewing sarcoma.


Subject(s)
Bone Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Keratin-17/genetics , Keratin-17/metabolism , Sarcoma, Ewing/genetics , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Adhesion , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Humans , Mice , Mice, Nude , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Finger Protein GLI1
14.
PLoS One ; 8(3): e59369, 2013.
Article in English | MEDLINE | ID: mdl-23527175

ABSTRACT

The EWS/FLI translocation product is the causative oncogene in Ewing sarcoma and acts as an aberrant transcription factor. EWS/FLI dysregulates gene expression during tumorigenesis by abnormally activating or repressing genes. The expression levels of thousands of genes are affected in Ewing sarcoma, however, it is unknown which of these genes contribute to the transformed phenotype. Here we characterize BCL11B as an up-regulated EWS/FLI target that is necessary for the maintenance of transformation in patient derived Ewing sarcoma cells lines. BCL11B, a zinc finger transcription factor, acts as a transcriptional repressor in Ewing's sarcoma and contributes to the EWS/FLI repressed gene signature. BCL11B repressive activity is mediated by the NuRD co-repressor complex. We further demonstrate that re-expression of SPRY1, a repressed target of BCL11B, limits the transformation capacity of Ewing sarcoma cells. These data define a new pathway downstream of EWS/FLI required for oncogenic maintenance in Ewing sarcoma.


Subject(s)
Gene Expression Regulation, Neoplastic/physiology , Oncogene Proteins, Fusion/physiology , Phenotype , Proto-Oncogene Protein c-fli-1/physiology , RNA-Binding Protein EWS/physiology , Repressor Proteins/metabolism , Sarcoma, Ewing/physiopathology , Tumor Suppressor Proteins/metabolism , Base Sequence , Blotting, Western , Cell Line, Tumor , Cloning, Molecular , Gene Expression Regulation, Neoplastic/genetics , Humans , Membrane Proteins/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Molecular Sequence Data , Oligonucleotides/genetics , Phosphoproteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sarcoma, Ewing/metabolism , Sequence Alignment , Sequence Analysis, RNA , Tumor Stem Cell Assay
15.
BMC Bioinformatics ; 14: 65, 2013 Feb 25.
Article in English | MEDLINE | ID: mdl-23441864

ABSTRACT

BACKGROUND: Characterising genetic diversity through the analysis of massively parallel sequencing (MPS) data offers enormous potential to significantly improve our understanding of the genetic basis for observed phenotypes, including predisposition to and progression of complex human disease. Great challenges remain in resolving genetic variants that are genuine from the millions of artefactual signals. RESULTS: FAVR is a suite of new methods designed to work with commonly used MPS analysis pipelines to assist in the resolution of some of the issues related to the analysis of the vast amount of resulting data, with a focus on relatively rare genetic variants. To the best of our knowledge, no equivalent method has previously been described. The most important and novel aspect of FAVR is the use of signatures in comparator sequence alignment files during variant filtering, and annotation of variants potentially shared between individuals. The FAVR methods use these signatures to facilitate filtering of (i) platform and/or mapping-specific artefacts, (ii) common genetic variants, and, where relevant, (iii) artefacts derived from imbalanced paired-end sequencing, as well as annotation of genetic variants based on evidence of co-occurrence in individuals. We applied conventional variant calling applied to whole-exome sequencing datasets, produced using both SOLiD and TruSeq chemistries, with or without downstream processing by FAVR methods. We demonstrate a 3-fold smaller rare single nucleotide variant shortlist with no detected reduction in sensitivity. This analysis included Sanger sequencing of rare variant signals not evident in dbSNP131, assessment of known variant signal preservation, and comparison of observed and expected rare variant numbers across a range of first cousin pairs. The principles described herein were applied in our recent publication identifying XRCC2 as a new breast cancer risk gene and have been made publically available as a suite of software tools. CONCLUSIONS: FAVR is a platform-agnostic suite of methods that significantly enhances the analysis of large volumes of sequencing data for the study of rare genetic variants and their influence on phenotypes.


Subject(s)
Genetic Variation , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Software , Breast Neoplasms/genetics , Exome , Female , Humans , Molecular Sequence Annotation , Phenotype , Sequence Alignment
16.
Hum Mutat ; 34(1): 255-65, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22949387

ABSTRACT

Classification of rare missense substitutions observed during genetic testing for patient management is a considerable problem in clinical genetics. The Bayesian integrated evaluation of unclassified variants is a solution originally developed for BRCA1/2. Here, we take a step toward an analogous system for the mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) that confer colon cancer susceptibility in Lynch syndrome by calibrating in silico tools to estimate prior probabilities of pathogenicity for MMR gene missense substitutions. A qualitative five-class classification system was developed and applied to 143 MMR missense variants. This identified 74 missense substitutions suitable for calibration. These substitutions were scored using six different in silico tools (Align-Grantham Variation Grantham Deviation, multivariate analysis of protein polymorphisms [MAPP], MutPred, PolyPhen-2.1, Sorting Intolerant From Tolerant, and Xvar), using curated MMR multiple sequence alignments where possible. The output from each tool was calibrated by regression against the classifications of the 74 missense substitutions; these calibrated outputs are interpretable as prior probabilities of pathogenicity. MAPP was the most accurate tool and MAPP + PolyPhen-2.1 provided the best-combined model (R(2)  = 0.62 and area under receiver operating characteristic = 0.93). The MAPP + PolyPhen-2.1 output is sufficiently predictive to feed as a continuous variable into the quantitative Bayesian integrated evaluation for clinical classification of MMR gene missense substitutions.


Subject(s)
Computational Biology/methods , DNA Mismatch Repair/genetics , Genetic Predisposition to Disease/genetics , Mutation, Missense , Adaptor Proteins, Signal Transducing/genetics , Adenosine Triphosphatases/genetics , Bayes Theorem , Calibration , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Computational Biology/classification , Computational Biology/standards , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Humans , Mismatch Repair Endonuclease PMS2 , MutL Protein Homolog 1 , MutS Homolog 2 Protein/genetics , Nuclear Proteins/genetics , Regression Analysis , Reproducibility of Results
17.
Genes Cancer ; 4(11-12): 486-500, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24386509

ABSTRACT

The vast majority of cancer-related deaths are attributable to metastasis. Effective treatment of metastatic disease will be improved by a better understanding of the molecular mechanisms contributing to this phenomenon. Much of the work in this field has focused on metastasis of carcinomas, tumors of epithelial origin, while metastasis of sarcomas, tumors of mesenchymal origin, remains poorly understood. Experimental evidence from studies in carcinomas, coupled with clinical observations, highlights the importance of both epithelial and mesenchymal characteristics in these cancer cells that make them competent for metastasis. We set out to test if similar cellular plasticity contributes to sarcoma metastasis. We found that the transcription factor, ZEB2, repressed epithelial gene expression in Ewing sarcoma cells, and this, in turn, repressed the epithelial phenotype. When ZEB2 was experimentally reduced in these cells, epithelial characteristics including decreased migratory ability and cytoskeleton rearrangements were observed. Furthermore, ZEB2 reduction in Ewing sarcoma cells resulted in a decreased metastatic potential using a mouse metastasis model. Our data show that Ewing sarcoma cells may have more epithelial plasticity than previously appreciated. This coupled with previous data demonstrating Ewing sarcoma cells also have mesenchymal features primes these cells to successfully metastasize. This is clinically relevant for 2 important reasons. First, this may offer a therapeutic opportunity to induce characteristics of one cell type or the other depending on the stage of the disease. Second, and more broadly, this raises questions about the cell of origin in Ewing sarcoma and may inform future animal models of the disease.

18.
Ecotoxicology ; 20(8): 2019-29, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21779820

ABSTRACT

Acute silver toxicity studies were conducted with and without food for four common freshwater test species: Daphnia magna, Ceriodaphnia dubia, Pimephales promelas (fathead minnow-FHM), and Oncorhynchus mykiss (rainbow trout-RBT) in order to generate acute-to-chronic ratios (ACR). The studies were conducted similarly (i.e., static-renewal or flow-through) to chronic/early-life stage studies that were previously performed in this laboratory. The acute toxicity (EC/LC50 values) of silver without food ranged from 0.57 µg dissolved Ag/l for C.dubia to 9.15 µg dissolved Ag/l for RBT. The presence of food resulted in an increase in EC/LC50 values from 1.25× for RBT to 22.4× for C. dubia. Invertebrate food type was also shown to effect acute silver toxicity. Food did not affect EC/LC50s or ACRs as greatly in fish studies as in invertebrate studies. ACRs for both invertebrate species were <1.0 when using acute studies without food but were 1.22 and 1.33 when using acute studies with food. ACRs for FHMs ranged from 4.06 to 7.19, while RBT ACRs ranged from 28.6 to 35.8 depending on whether food was present in acute studies. The data generated from this research program should be useful in re-determining a final ACR for silver in freshwater as well as in risk assessments.


Subject(s)
Fishes , Silver Nitrate/toxicity , Toxicity Tests, Acute , Toxicity Tests, Chronic , Animal Nutritional Physiological Phenomena , Animals , Cladocera/drug effects , Cyprinidae , Daphnia/drug effects , Oncorhynchus mykiss , Water Pollutants, Chemical/toxicity
19.
J Phys Chem B ; 115(29): 9224-35, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21648462

ABSTRACT

Amyloid precursor protein (APP) is a cell-surface trans-membrane glycoprotein that appears to play an important role in in vivo Cu ion homeostasis. This protein includes a copper-binding-domain (CuBD) fragment consisting of residues 124-189, of which His147, His151, Tyr168, and possibly Met170 comprise the explicit Cu-binding site (CuBS). Molecular dynamics (MD) simulations are carried out on Cu-free and Cu-bound APP models, based on crystal structures including residues 131-189 obtained from the Protein Data Bank, to confirm the site of Cu-ion binding and to elucidate the effects of the oxidation state of the Cu ions (default GROMACS parameters modeled only the electrostatic binding to the Cu ions at the CuBS) and explicit water molecules on the conformational properties of the 131-189 residue portion of the CuBD. MD trajectory analysis demonstrated a conformational change of Met170. The sulfur atom of Met170 moves closer to the Cu(II) ion and away from Cu(I), and this change may play an important role in the reduction of Cu(II) and the release of Cu(I). Two explicit water molecules were included in the MD simulations. These water molecules that bind strongly to the Cu ions via their lone pair electrons result in a significant modification of the binding interactions with the other residues at the CuBS.


Subject(s)
Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism , Copper/metabolism , Copper/pharmacology , Molecular Dynamics Simulation , Water/pharmacology , Amino Acid Sequence , Binding Sites , Hydrogen Bonding , Molecular Sequence Data , Principal Component Analysis , Protein Structure, Secondary/drug effects , Protein Structure, Tertiary/drug effects , Time Factors
20.
Nat Methods ; 7(10): 801-5, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20936779

ABSTRACT

Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps.


Subject(s)
MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinases/metabolism , Proteomics/methods , Base Sequence , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cell Line , Cell Membrane/metabolism , Cloning, Molecular , DNA, Complementary/genetics , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Luciferases/genetics , MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/physiology , Molecular Sequence Data , Mucins/genetics , Mucins/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , RNA, Small Interfering/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Sodium-Hydrogen Exchanger 1 , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...