Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Neural Dev ; 19(1): 1, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167468

ABSTRACT

Prdm12 is an epigenetic regulator expressed in developing and mature nociceptive neurons, playing a key role in their specification during neurogenesis and modulating pain sensation at adulthood. In vitro studies suggested that Prdm12 recruits the methyltransferase G9a through its zinc finger domains to regulate target gene expression, but how Prdm12 interacts with G9a and whether G9a plays a role in Prdm12's functional properties in sensory ganglia remain unknown. Here we report that Prdm12-G9a interaction is likely direct and that it involves the SET domain of G9a. We show that both proteins are largely co-expressed in dorsal root ganglia during early murine development, opening the possibility that G9a plays a role in DRG and may act as a mediator of Prdm12's function in the development of nociceptive sensory neurons. To test this hypothesis, we conditionally inactivated G9a in neural crest using a Wnt1-Cre transgenic mouse line. We found that the specific loss of G9a in the neural crest lineage does not lead to dorsal root ganglia hypoplasia due to the loss of somatic nociceptive neurons nor to the ectopic expression of the visceral determinant Phox2b as observed upon Prdm12 ablation. These findings suggest that Prdm12 function in the initiation of the nociceptive lineage does not critically involves its interaction with G9a.


Subject(s)
Neurogenesis , Nociceptors , Mice , Animals , Nociceptors/metabolism , Neurogenesis/physiology , Sensory Receptor Cells , Transcription Factors/genetics , Transcription Factors/metabolism , Ganglia, Spinal , Mice, Transgenic , Carrier Proteins/genetics , Carrier Proteins/metabolism , Nerve Tissue Proteins/metabolism
2.
iScience ; 26(12): 108364, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38025786

ABSTRACT

Prdm12 is a transcriptional regulator essential for the emergence of the somatic nociceptive lineage during sensory neurogenesis. The exact mechanisms by which Prdm12 promotes nociceptor development remain, however, poorly understood. Here, we report that the trigeminal and dorsal root ganglia hypoplasia induced by the loss of Prdm12 involves Bax-dependent apoptosis and that it is accompanied by the ectopic expression of the visceral sensory neuron determinants Phox2a and Phox2b, which is, however, not sufficient to impose a complete fate switch in surviving somatosensory neurons. Mechanistically, our data reveal that Prdm12 is required from somatosensory neural precursors to early post-mitotic differentiating nociceptive neurons to repress Phox2a/b and that its repressive function is context dependent. Together, these findings reveal that besides its essential role in nociceptor survival during development, Prdm12 also promotes nociceptor fate via an additional mechanism, by preventing precursors from engaging into an alternate Phox2 driven visceral neuronal type differentiation program.

3.
Science ; 375(6582): eabm4459, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35175798

ABSTRACT

The blood-brain barrier (BBB) protects the central nervous system (CNS) from harmful blood-borne factors. Although BBB dysfunction is a hallmark of several neurological disorders, therapies to restore BBB function are lacking. An attractive strategy is to repurpose developmental BBB regulators, such as Wnt7a, into BBB-protective agents. However, safe therapeutic use of Wnt ligands is complicated by their pleiotropic Frizzled signaling activities. Taking advantage of the Wnt7a/b-specific Gpr124/Reck co-receptor complex, we genetically engineered Wnt7a ligands into BBB-specific Wnt activators. In a "hit-and-run" adeno-associated virus-assisted CNS gene delivery setting, these new Gpr124/Reck-specific agonists protected BBB function, thereby mitigating glioblastoma expansion and ischemic stroke infarction. This work reveals that the signaling specificity of Wnt ligands is adjustable and defines a modality to treat CNS disorders by normalizing the BBB.


Subject(s)
Blood-Brain Barrier/physiology , GPI-Linked Proteins/agonists , Glioblastoma/therapy , Receptors, G-Protein-Coupled/agonists , Stroke/therapy , Wnt Proteins/genetics , Wnt Signaling Pathway , Animals , Brain/metabolism , Endothelial Cells/metabolism , Frizzled Receptors/metabolism , Glioblastoma/metabolism , Ligands , Mice , Mice, Inbred C57BL , Mutagenesis , Nervous System/embryology , Protein Engineering , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Stroke/metabolism , Wnt Proteins/chemistry , Wnt Proteins/metabolism , Xenopus laevis , Zebrafish
4.
Pain ; 163(8): e927-e941, 2022 08 01.
Article in English | MEDLINE | ID: mdl-34961757

ABSTRACT

ABSTRACT: Prdm12 is a conserved epigenetic transcriptional regulator that displays restricted expression in nociceptors of the developing peripheral nervous system. In mice, Prdm12 is required for the development of the entire nociceptive lineage. In humans, PRDM12 mutations cause congenital insensitivity to pain, likely because of the loss of nociceptors. Prdm12 expression is maintained in mature nociceptors suggesting a yet-to-be explored functional role in adults. Using Prdm12 inducible conditional knockout mouse models, we report that in adult nociceptors Prdm12 is no longer required for cell survival but continues to play a role in the transcriptional control of a network of genes, many of them encoding ion channels and receptors. We found that disruption of Prdm12 alters the excitability of dorsal root ganglion neurons in culture. Phenotypically, we observed that mice lacking Prdm12 exhibit normal responses to thermal and mechanical nociceptive stimuli but a reduced response to capsaicin and hypersensitivity to formalin-induced inflammatory pain. Together, our data indicate that Prdm12 regulates pain-related behavior in a complex way by modulating gene expression in adult nociceptors and controlling their excitability. The results encourage further studies to assess the potential of Prdm12 as a target for analgesic development.


Subject(s)
Carrier Proteins , Ganglia, Spinal , Nerve Tissue Proteins , Nociceptors , Animals , Carrier Proteins/genetics , Ganglia, Spinal/metabolism , Gene Expression , Humans , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nociceptors/physiology , Pain/genetics , Pain/metabolism
5.
Front Mol Neurosci ; 14: 720973, 2021.
Article in English | MEDLINE | ID: mdl-34646120

ABSTRACT

PR domain-containing member 12 (PRDM12) is a key developmental transcription factor in sensory neuronal specification and survival. Patients with rare deleterious variants in PRDM12 are born with congenital insensitivity to pain (CIP) due to the complete absence of a subtype of peripheral neurons that detect pain. In this paper, we report two additional CIP cases with a novel homozygous PRDM12 variant. To elucidate the function of PRDM12 during mammalian development and adulthood, we generated temporal and spatial conditional mouse models. We find that PRDM12 is expressed throughout the adult nervous system. We observed that loss of PRDM12 during mid-sensory neurogenesis but not in the adult leads to reduced survival. Comparing cellular biophysical nociceptive properties in developmental and adult-onset PRDM12 deletion mouse models, we find that PRDM12 is necessary for proper nociceptive responses throughout life. However, we find that PRDM12 regulates distinct age-dependent transcriptional programs. Together, our results implicate PRDM12 as a viable therapeutic target for specific pain therapies even in adults.

6.
Nature ; 595(7867): 394-398, 2021 07.
Article in English | MEDLINE | ID: mdl-34262211

ABSTRACT

The evolution of the global carbon and silicon cycles is thought to have contributed to the long-term stability of Earth's climate1-3. Many questions remain, however, regarding the feedback mechanisms at play, and there are limited quantitative constraints on the sources and sinks of these elements in Earth's surface environments4-12. Here we argue that the lithium-isotope record can be used to track the processes controlling the long-term carbon and silicon cycles. By analysing more than 600 shallow-water marine carbonate samples from more than 100 stratigraphic units, we construct a new carbonate-based lithium-isotope record spanning the past 3 billion years. The data suggest an increase in the carbonate lithium-isotope values over time, which we propose was driven by long-term changes in the lithium-isotopic conditions of sea water, rather than by changes in the sedimentary alterations of older samples. Using a mass-balance modelling approach, we propose that the observed trend in lithium-isotope values reflects a transition from Precambrian carbon and silicon cycles to those characteristic of the modern. We speculate that this transition was linked to a gradual shift to a biologically controlled marine silicon cycle and the evolutionary radiation of land plants13,14.


Subject(s)
Carbon Cycle , Carbon , Isotopes , Lithium , Silicon , Aquatic Organisms , Carbon/analysis , Carbon/metabolism , Geologic Sediments/chemistry , Isotopes/analysis , Lithium/analysis , Plants , Seawater/chemistry , Silicon/analysis , Silicon/metabolism
7.
Front Cell Dev Biol ; 8: 587699, 2020.
Article in English | MEDLINE | ID: mdl-33195244

ABSTRACT

Sensory fibers of the peripheral nervous system carry sensation from specific sense structures or use different tissues and organs as receptive fields, and convey this information to the central nervous system. In the head of vertebrates, each cranial sensory ganglia and associated nerves perform specific functions. Sensory ganglia are composed of different types of specialized neurons in which two broad categories can be distinguished, somatosensory neurons relaying all sensations that are felt and visceral sensory neurons sensing the internal milieu and controlling body homeostasis. While in the trunk somatosensory neurons composing the dorsal root ganglia are derived exclusively from neural crest cells, somato- and visceral sensory neurons of cranial sensory ganglia have a dual origin, with contributions from both neural crest and placodes. As most studies on sensory neurogenesis have focused on dorsal root ganglia, our understanding of the molecular mechanisms underlying the embryonic development of the different cranial sensory ganglia remains today rudimentary. However, using single-cell RNA sequencing, recent studies have made significant advances in the characterization of the neuronal diversity of most sensory ganglia. Here we summarize the general anatomy, function and neuronal diversity of cranial sensory ganglia. We then provide an overview of our current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system, focusing on cranial sensory ganglia, highlighting specific aspects of their development and comparing it to that of trunk sensory ganglia.

8.
Cereb Cortex ; 30(5): 3296-3312, 2020 05 14.
Article in English | MEDLINE | ID: mdl-31845734

ABSTRACT

Dmrt5 (Dmrta2) and Dmrt3 are key regulators of cortical patterning and progenitor proliferation and differentiation. In this study, we show an altered apical to intermediate progenitor transition, with a delay in SP neurogenesis and premature birth of Ctip2+ cortical neurons in Dmrt5-/- mice. In addition to the cortical progenitors, DMRT5 protein appears present in postmitotic subplate (SP) and marginal zone neurons together with some migrating cortical neurons. We observed the altered split of preplate and the reduced SP and disturbed radial migration of cortical neurons into cortical plate in Dmrt5-/- brains and demonstrated an increase in the proportion of multipolar cells in primary neuronal cultures from Dmrt5-/- embryonic brains. Dmrt5 affects cortical development with specific time sensitivity that we described in two conditional mice with slightly different deletion time. We only observed a transient SP phenotype at E15.5, but not by E18.5 after early (Dmrt5lox/lox;Emx1Cre), but not late (Dmrt5lox/lox;NestinCre) deletion of Dmrt5. SP was less disturbed in Dmrt5lox/lox;Emx1Cre and Dmrt3-/- brains than in Dmrt5-/- and affects dorsomedial cortex more than lateral and caudal cortex. Our study demonstrates a novel function of Dmrt5 in the regulation of early SP formation and radial cortical neuron migration. SUMMARY STATEMENT: Our study demonstrates a novel function of Dmrt5 in regulating marginal zone and subplate formation and migration of cortical neurons to cortical plate.


Subject(s)
Cell Movement/genetics , Neocortex/embryology , Neurons/metabolism , Transcription Factors/genetics , Animals , Cell Proliferation/genetics , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Embryo, Mammalian , Mice , Mice, Knockout , Mitosis/genetics , Neocortex/cytology , Neurons/cytology , Primary Cell Culture
9.
Cell Rep ; 26(13): 3522-3536.e5, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30917309

ABSTRACT

In humans, many cases of congenital insensitivity to pain (CIP) are caused by mutations of components of the NGF/TrkA signaling pathway, which is required for survival and specification of nociceptors and plays a major role in pain processing. Mutations in PRDM12 have been identified in CIP patients that indicate a putative role for this transcriptional regulator in pain sensing. Here, we show that Prdm12 expression is restricted to developing and adult nociceptors and that its genetic ablation compromises their viability and maturation. Mechanistically, we find that Prdm12 is required for the initiation and maintenance of the expression of TrkA by acting as a modulator of Neurogenin1/2 transcription factor activity, in frogs, mice, and humans. Altogether, our results identify Prdm12 as an evolutionarily conserved key regulator of nociceptor specification and as an actionable target for new pain therapeutics.


Subject(s)
Carrier Proteins/physiology , Nerve Tissue Proteins/physiology , Neurogenesis/physiology , Nociceptors/cytology , Animals , Apoptosis , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carrier Proteins/genetics , Cell Line , Evolution, Molecular , Female , Ganglia, Sensory/cytology , Gene Knockout Techniques , Human Embryonic Stem Cells , Humans , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Crest/cytology , Nociceptors/metabolism , Receptor, trkA/metabolism , Tretinoin/physiology , Xenopus laevis
10.
J Neurosci ; 38(42): 9105-9121, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30143575

ABSTRACT

Specification of dorsoventral regional identity in progenitors of the developing telencephalon is a first pivotal step in the development of the cerebral cortex and basal ganglia. Previously, we demonstrated that the two zinc finger doublesex and mab-3 related (Dmrt) genes, Dmrt5 (Dmrta2) and Dmrt3, which are coexpressed in high caudomedial to low rostrolateral gradients in the cerebral cortical primordium, are separately needed for normal formation of the cortical hem, hippocampus, and caudomedial neocortex. We have now addressed the role of Dmrt3 and Dmrt5 in controlling dorsoventral division of the telencephalon in mice of either sex by comparing the phenotypes of single knock-out (KO) with double KO embryos and by misexpressing Dmrt5 in the ventral telencephalon. We find that DMRT3 and DMRT5 act as critical regulators of progenitor cell dorsoventral identity by repressing ventralizing regulators. Early ventral fate transcriptional regulators expressed in the dorsal lateral ganglionic eminence, such as Gsx2, are upregulated in the dorsal telencephalon of Dmrt3;Dmrt5 double KO embryos and downregulated when ventral telencephalic progenitors express ectopic Dmrt5 Conditional overexpression of Dmrt5 throughout the telencephalon produces gene expression and structural defects that are highly consistent with reduced GSX2 activity. Further, Emx2;Dmrt5 double KO embryos show a phenotype similar to Dmrt3;Dmrt5 double KO embryos, and both DMRT3, DMRT5 and the homeobox transcription factor EMX2 bind to a ventral telencephalon-specific enhancer in the Gsx2 locus. Together, our findings uncover cooperative functions of DMRT3, DMRT5, and EMX2 in dividing dorsal from ventral in the telencephalon.SIGNIFICANCE STATEMENT We identified the DMRT3 and DMRT5 zinc finger transcription factors as novel regulators of dorsoventral patterning in the telencephalon. Our data indicate that they have overlapping functions and compensate for one another. The double, but not the single, knock-out produces a dorsal telencephalon that is ventralized, and olfactory bulb tissue takes over most remaining cortex. Conversely, overexpressing Dmrt5 throughout the telencephalon causes expanded expression of dorsal gene determinants and smaller olfactory bulbs. Furthermore, we show that the homeobox transcription factor EMX2 that is coexpressed with DMRT3 and DMRT5 in cortical progenitors cooperates with them to maintain dorsoventral patterning in the telencephalon. Our study suggests that DMRT3/5 function with EMX2 in positioning the pallial-subpallial boundary by antagonizing the ventral homeobox transcription factor GSX2.


Subject(s)
Homeodomain Proteins/physiology , Neural Stem Cells/physiology , Neurons/physiology , Telencephalon/embryology , Transcription Factors/physiology , Animals , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/metabolism , Neurons/metabolism , Telencephalon/metabolism , Transcription Factors/genetics
11.
Proc Natl Acad Sci U S A ; 115(32): 8104-8109, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30038009

ABSTRACT

The oxygenation of Earth's surface environment dramatically altered key biological and geochemical cycles and ultimately ushered in the rise of an ecologically diverse biosphere. However, atmospheric oxygen partial pressures (pO2) estimates for large swaths of the Precambrian remain intensely debated. Here we evaluate and explore the use of carbonate cerium (Ce) anomalies (Ce/Ce*) as a quantitative atmospheric pO2 proxy and provide estimates of Proterozoic pO2 using marine carbonates from a unique Precambrian carbonate succession-the Paleoproterozoic Pethei Group. In contrast to most previous work, we measure Ce/Ce* on marine carbonate precipitates that formed in situ across a depth gradient, building on previous detailed sedimentology and stratigraphy to constrain the paleo-depth of each sample. Measuring Ce/Ce* across a full platform to basin depth gradient, we found only minor depleted Ce anomalies restricted to the platform and upper slope facies. We combine these results with a Ce oxidation model to provide a quantitative constraint on atmospheric pO2 1.87 billion years ago (Ga). Our results suggest Paleoproterozoic atmospheric oxygen concentrations were low, near 0.1% of the present atmospheric level. This work provides another crucial line of empirical evidence that atmospheric oxygen levels returned to low concentrations following the Lomagundi Event, and remained low enough for large portions of the Proterozoic to have impacted the ecology of the earliest complex organisms.

12.
Cereb Cortex ; 28(2): 493-509, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28031177

ABSTRACT

Mice that are constitutively null for the zinc finger doublesex and mab-3 related (Dmrt) gene, Dmrt5/Dmrta2, show a variety of patterning abnormalities in the cerebral cortex, including the loss of the cortical hem, a powerful cortical signaling center. In conditional Dmrt5 gain of function and loss of function mouse models, we generated bidirectional changes in the neocortical area map without affecting the hem. Analysis indicated that DMRT5, independent of the hem, directs the rostral-to-caudal pattern of the neocortical area map. Thus, DMRT5 joins a small number of transcription factors shown to control directly area size and position in the neocortex. Dmrt5 deletion after hem formation also reduced hippocampal size and shifted the position of the neocortical/paleocortical boundary. Dmrt3, like Dmrt5, is expressed in a gradient across the cortical primordium. Mice lacking Dmrt3 show cortical patterning defects akin to but milder than those in Dmrt5 mutants, perhaps in part because Dmrt5 expression increases in the absence of Dmrt3. DMRT5 upregulates Dmrt3 expression and negatively regulates its own expression, which may stabilize the level of DMRT5. Together, our findings indicate that finely tuned levels of DMRT5, together with DMRT3, regulate patterning of the cerebral cortex.


Subject(s)
Embryonic Development/physiology , Hippocampus/metabolism , Neocortex/metabolism , Transcription Factors/biosynthesis , Animals , Hippocampus/embryology , Hippocampus/growth & development , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neocortex/embryology , Neocortex/growth & development , Neurogenesis/physiology
13.
J Neurosci ; 37(46): 11245-11254, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29025924

ABSTRACT

Regulation of the neuron-glia cell-fate switch is a critical step in the development of the CNS. Previously, we demonstrated that Lhx2 is a necessary and sufficient regulator of this process in the mouse hippocampal primordium, such that Lhx2 overexpression promotes neurogenesis and suppresses gliogenesis, whereas loss of Lhx2 has the opposite effect. We tested a series of transcription factors for their ability to mimic Lhx2 overexpression and suppress baseline gliogenesis, and also to compensate for loss of Lhx2 and suppress the resulting enhanced level of gliogenesis in the hippocampus. Here, we demonstrate a novel function of Dmrt5/Dmrta2 as a neurogenic factor in the developing hippocampus. We show that Dmrt5, as well as known neurogenic factors Neurog2 and Pax6, can each not only mimic Lhx2 overexpression, but also can compensate for loss of Lhx2 to different extents. We further uncover a reciprocal regulatory relationship between Dmrt5 and Lhx2, such that each can compensate for loss of the other. Dmrt5 and Lhx2 also have opposing regulatory control on Pax6 and Neurog2, indicating a complex bidirectionally regulated network that controls the neuron-glia cell-fate switch.SIGNIFICANCE STATEMENT We identify Dmrt5 as a novel regulator of the neuron-glia cell-fate switch in the developing hippocampus. We demonstrate Dmrt5 to be neurogenic, and reciprocally regulated by Lhx2: loss of either factor promotes gliogenesis; overexpression of either factor suppresses gliogenesis and promotes neurogenesis; each can substitute for loss of the other. Furthermore, each factor has opposing effects on established neurogenic genes Neurog2 and Pax6 Dmrt5 is known to suppress their expression, and we show that Lhx2 is required to maintain it. Our study reveals a complex regulatory network with bidirectional control of a fundamental feature of CNS development, the control of the production of neurons versus astroglia in the developing hippocampus.Finally, we confirm that Lhx2 binds a highly conserved putative enhancer of Dmrt5, suggesting an evolutionarily conserved regulatory relationship between these factors. Our findings uncover a complex network that involves Lhx2, Dmrt5, Neurog2, and Pax6, and that ensures the appropriate amount and timing of neurogenesis and gliogenesis in the developing hippocampus.


Subject(s)
Hippocampus/physiology , LIM-Homeodomain Proteins/physiology , Neurogenesis/physiology , Neuroglia/physiology , Neurons/physiology , Transcription Factors/physiology , Animals , Base Sequence , Cell Differentiation/physiology , Cells, Cultured , Female , Hippocampus/cytology , Hippocampus/embryology , Male , Mice , Mice, Transgenic , Pregnancy
14.
Neural Dev ; 12(1): 16, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28863786

ABSTRACT

BACKGROUND: Amacrine interneurons that modulate synaptic plasticity between bipolar and ganglion cells constitute the most diverse cell type in the retina. Most are inhibitory neurons using either GABA or glycine as neurotransmitters. Although several transcription factors involved in amacrine cell fate determination have been identified, mechanisms underlying amacrine cell subtype specification remain to be further understood. The Prdm13 histone methyltransferase encoding gene is a target of the transcription factor Ptf1a, an essential regulator of inhibitory neuron cell fate in the retina. Here, we have deepened our knowledge on its interaction with Ptf1a and investigated its role in amacrine cell subtype determination in the developing Xenopus retina. METHODS: We performed prdm13 gain and loss of function in Xenopus and assessed the impact on retinal cell fate determination using RT-qPCR, in situ hybridization and immunohistochemistry. RESULTS: We found that prdm13 in the amphibian Xenopus is expressed in few retinal progenitors and in about 40% of mature amacrine cells, predominantly in glycinergic ones. Clonal analysis in the retina reveals that prdm13 overexpression favours amacrine cell fate determination, with a bias towards glycinergic cells. Conversely, knockdown of prdm13 specifically inhibits glycinergic amacrine cell genesis. We also showed that, as in the neural tube, prdm13 is subjected to a negative autoregulation in the retina. Our data suggest that this is likely due to its ability to repress the expression of its inducer, ptf1a. CONCLUSIONS: Our results demonstrate that Prdm13, downstream of Ptf1a, acts as an important regulator of glycinergic amacrine subtype specification in the Xenopus retina. We also reveal that Prdm13 regulates ptf1a expression through a negative feedback loop.


Subject(s)
Amacrine Cells/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Neurogenesis/physiology , Retina/embryology , Xenopus Proteins/metabolism , Amacrine Cells/cytology , Animals , Feedback, Physiological/physiology , Gene Expression Regulation, Developmental , Glycine/metabolism , Retina/metabolism , Xenopus laevis
15.
Proc Natl Acad Sci U S A ; 114(28): E5599-E5607, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28655839

ABSTRACT

The mechanisms that determine whether a neural progenitor cell (NPC) reenters the cell cycle or exits and differentiates are pivotal for generating cells in the correct numbers and diverse types, and thus dictate proper brain development. Combining gain-of-function and loss-of-function approaches in an embryonic stem cell-derived cortical differentiation model, we report that doublesex- and mab-3-related transcription factor a2 (Dmrta2, also known as Dmrt5) plays an important role in maintaining NPCs in the cell cycle. Temporally controlled expression of transgenic Dmrta2 in NPCs suppresses differentiation without affecting their neurogenic competence. In contrast, Dmrta2 knockout accelerates the cell cycle exit and differentiation into postmitotic neurons of NPCs derived from embryonic stem cells and in Emx1-cre conditional mutant mice. Dmrta2 function is linked to the regulation of Hes1 and other proneural genes, as demonstrated by genome-wide RNA-seq and direct binding of Dmrta2 to the Hes1 genomic locus. Moreover, transient Hes1 expression rescues precocious neurogenesis in Dmrta2 knockout NPCs. Our study thus establishes a link between Dmrta2 modulation of Hes1 expression and the maintenance of NPCs during cortical development.


Subject(s)
Neural Stem Cells/cytology , Transcription Factor HES-1/genetics , Transcription Factor HES-1/physiology , Transcription Factors/genetics , Transcription Factors/physiology , Animals , Cell Cycle , Cell Differentiation , Cell Proliferation , Embryonic Stem Cells/cytology , Gene Expression Regulation, Developmental , Mice , Mice, Knockout , Neurogenesis , Neurons/cytology , Phenotype , Transgenes
16.
Development ; 142(19): 3416-28, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26443638

ABSTRACT

V1 interneurons are inhibitory neurons that play an essential role in vertebrate locomotion. The molecular mechanisms underlying their genesis remain, however, largely undefined. Here, we show that the transcription factor Prdm12 is selectively expressed in p1 progenitors of the hindbrain and spinal cord in the frog embryo, and that a similar restricted expression profile is observed in the nerve cord of other vertebrates as well as of the cephalochordate amphioxus. Using frog, chick and mice, we analyzed the regulation of Prdm12 and found that its expression in the caudal neural tube is dependent on retinoic acid and Pax6, and that it is restricted to p1 progenitors, due to the repressive action of Dbx1 and Nkx6-1/2 expressed in the adjacent p0 and p2 domains. Functional studies in the frog, including genome-wide identification of its targets by RNA-seq and ChIP-Seq, reveal that vertebrate Prdm12 proteins act as a general determinant of V1 cell fate, at least in part, by directly repressing Dbx1 and Nkx6 genes. This probably occurs by recruiting the methyltransferase G9a, an activity that is not displayed by the amphioxus Prdm12 protein. Together, these findings indicate that Prdm12 promotes V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes, and suggest that this function might have only been acquired after the split of the vertebrate and cephalochordate lineages.


Subject(s)
Carrier Proteins/metabolism , Gene Expression Regulation, Developmental/physiology , Morphogenesis/physiology , Nerve Tissue Proteins/metabolism , Renshaw Cells/physiology , Xenopus/embryology , Animals , Base Sequence , Chick Embryo , Chromatin Immunoprecipitation , Computational Biology , DNA Primers/genetics , DNA, Complementary/genetics , Gene Expression Regulation, Developmental/genetics , Homeodomain Proteins/metabolism , Immunohistochemistry , In Situ Hybridization , Mice , Molecular Sequence Data , Rhombencephalon/metabolism , Sequence Analysis, RNA , Species Specificity , Spinal Cord/metabolism
17.
Cell Cycle ; 14(12): 1799-808, 2015.
Article in English | MEDLINE | ID: mdl-25891934

ABSTRACT

PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Neurons/pathology , Pain Perception , Amino Acid Sequence , Animals , Cell Lineage , Crystallography, X-Ray , Drosophila , Female , Fibroblasts/metabolism , Gene Expression Profiling , Gene Expression Regulation , HEK293 Cells , Hereditary Sensory and Autonomic Neuropathies/genetics , Humans , Immunohistochemistry , Male , Molecular Sequence Data , Mutation , Neurogenesis/genetics , Neurons/metabolism , Protein Structure, Tertiary , Sensory Receptor Cells/metabolism , Sequence Homology, Amino Acid , Xenopus laevis
18.
Dev Biol ; 386(2): 340-57, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24370451

ABSTRACT

The basic helix-loop-helix (bHLH) transcriptional activator Ptf1a determines inhibitory GABAergic over excitatory glutamatergic neuronal cell fate in progenitors of the vertebrate dorsal spinal cord, cerebellum and retina. In an in situ hybridization expression survey of PR domain containing genes encoding putative chromatin-remodeling zinc finger transcription factors in Xenopus embryos, we identified Prdm13 as a histone methyltransferase belonging to the Ptf1a synexpression group. Gain and loss of Ptf1a function analyses in both frog and mice indicates that Prdm13 is positively regulated by Ptf1a and likely constitutes a direct transcriptional target. We also showed that this regulation requires the formation of the Ptf1a-Rbp-j complex. Prdm13 knockdown in Xenopus embryos and in Ptf1a overexpressing ectodermal explants lead to an upregulation of Tlx3/Hox11L2, which specifies a glutamatergic lineage and a reduction of the GABAergic neuronal marker Pax2. It also leads to an upregulation of Prdm13 transcription, suggesting an autonegative regulation. Conversely, in animal caps, Prdm13 blocks the ability of the bHLH factor Neurog2 to activate Tlx3. Additional gain of function experiments in the chick neural tube confirm that Prdm13 suppresses Tlx3(+)/glutamatergic and induces Pax2(+)/GABAergic neuronal fate. Thus, Prdm13 is a novel crucial component of the Ptf1a regulatory pathway that, by modulating the transcriptional activity of bHLH factors such as Neurog2, controls the balance between GABAergic and glutamatergic neuronal fate in the dorsal and caudal part of the vertebrate neural tube.


Subject(s)
Cell Differentiation/physiology , GABAergic Neurons/physiology , Gene Expression Regulation, Developmental/physiology , Histone-Lysine N-Methyltransferase/metabolism , Neural Tube/embryology , Xenopus Proteins/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Chick Embryo , DNA Primers/genetics , Electroporation , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/genetics , Immunohistochemistry , Immunoprecipitation , In Situ Hybridization , Mice , Neural Tube/cytology , PAX2 Transcription Factor/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Xenopus Proteins/genetics , Xenopus laevis
19.
Cell Mol Life Sci ; 70(20): 3829-45, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23463235

ABSTRACT

Dmrt genes encode a large family of transcription factors characterized by the presence of a DM domain, an unusual zinc finger DNA binding domain. While Dmrt genes are well known for their important role in sexual development in arthropodes, nematodes and vertebrates, several new findings indicate emerging functions of this gene family in other developmental processes. Here, we provide an overview of the evolution, structure and mechanisms of action of Dmrt genes. We summarize recent findings on their function in sexual regulation and discuss more extensively the role played by these proteins in somitogenesis and neural development.


Subject(s)
Embryonic Development , Evolution, Molecular , Gene Expression Regulation, Developmental , Transcription Factors/metabolism , Animals , Conserved Sequence , Humans , Meiosis , Neurogenesis , Phylogeny , Sex Differentiation , Sexual Development , Somites/embryology , Somites/metabolism , Transcription Factors/genetics
20.
Dev Biol ; 373(1): 39-52, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23064029

ABSTRACT

The Dmrt (doublesex and mab-3 related transcription factor) genes encode a large family of evolutionarily conserved transcription factors whose function in sex specific differentiation has been well studied in all animal lineages. In vertebrates, their function is not restricted to the developing gonads. For example, Xenopus Dmrt4 is essential for neurogenesis in the olfactory system. Here we have isolated and characterized Xenopus Dmrt5 and found that it is coexpressed with Dmrt4 in the developing olfactory placodes. As Dmrt4, Dmrt5 is positively regulated in the ectoderm by neural inducers and negatively by proneural factors. Both Dmrt5 and Dmrt4 genes are also activated by the combined action of the transcription factor Otx2, broadly transcribed in the head ectoderm and of Notch signaling, activated in the anterior neural ridge. As for Dmrt4, knockdown of Dmrt5 impairs neurogenesis in the embryonic olfactory system and in neuralized animal caps. Conversely, its overexpression promotes neuronal differentiation in animal caps, a property that requires the conserved C-terminal DMA and DMB domains. We also found that the sea anenome Dmrt4/5 related gene NvDmrtb also induces neurogenesis in Xenopus animal caps and that conversely, its knockdown in Nematostella reduces elav-1 positive neurons. Together, our data identify Dmrt5 as a novel important regulator of neurogenesis whose function overlaps with that of Dmrt4 during Xenopus olfactory system development. They also suggest that Dmrt may have had a role in neurogenesis in the last common ancestor of cnidarians and bilaterians.


Subject(s)
Neurogenesis/physiology , Olfactory Mucosa/embryology , Transcription Factors/metabolism , Xenopus Proteins/metabolism , Xenopus/embryology , Animals , COS Cells , Chlorocebus aethiops , DNA Primers/genetics , DNA, Complementary/genetics , Electrophoretic Mobility Shift Assay , Gene Knockdown Techniques , In Situ Nick-End Labeling , Otx Transcription Factors/metabolism , Plasmids/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sea Anemones/genetics , Species Specificity , Transcription Factors/genetics , Transcription Factors/physiology , Xenopus/genetics , Xenopus Proteins/genetics , Xenopus Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...