Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
FEBS J ; 291(10): 2260-2272, 2024 May.
Article in English | MEDLINE | ID: mdl-38390750

ABSTRACT

The identification of the coproporphyrin-dependent heme biosynthetic pathway, which is used almost exclusively by monoderm bacteria in 2015 by Dailey et al. triggered studies aimed at investigating the enzymes involved in this pathway that were originally assigned to the protoporphyrin-dependent heme biosynthetic pathway. Here, we revisit the active site of coproporphyrin ferrochelatase by a biophysical and biochemical investigation using the physiological substrate coproporphyrin III, which in contrast to the previously used substrate protoporphyrin IX has four propionate substituents and no vinyl groups. In particular, we have compared the reactivity of wild-type coproporphyrin ferrochelatase from the firmicute Listeria monocytogenes with those of variants, namely, His182Ala (H182A) and Glu263Gln (E263Q), involving two key active site residues. Interestingly, both variants are active only toward the physiological substrate coproporphyrin III but inactive toward protoporphyrin IX. In addition, E263 exchange impairs the final oxidation step from ferrous coproheme to ferric coproheme. The characteristics of the active site in the context of the residues involved and the substrate binding properties are discussed here using structural and functional means, providing a further contribution to the deciphering of this enigmatic reaction mechanism.


Subject(s)
Catalytic Domain , Coproporphyrins , Ferrochelatase , Glutamic Acid , Histidine , Protoporphyrins , Ferrochelatase/metabolism , Ferrochelatase/chemistry , Ferrochelatase/genetics , Coproporphyrins/metabolism , Coproporphyrins/chemistry , Protoporphyrins/metabolism , Protoporphyrins/chemistry , Histidine/metabolism , Histidine/chemistry , Histidine/genetics , Glutamic Acid/metabolism , Glutamic Acid/chemistry , Glutamic Acid/genetics , Heme/metabolism , Heme/chemistry , Substrate Specificity , Models, Molecular , Oxidation-Reduction , Kinetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Catalysis
2.
J Inorg Biochem ; 252: 112455, 2024 03.
Article in English | MEDLINE | ID: mdl-38141433

ABSTRACT

The cleavage of the axial S(Met) - Fe bond in cytochrome c (cytc) upon binding to cardiolipin (CL), a glycerophospholipid of the inner mitochondrial membrane, is one of the key molecular changes that impart cytc with (lipo)peroxidase activity essential to its pro-apoptotic function. In this work, UV - VIS, CD, MCD and fluorescence spectroscopies were used to address the role of the Fe - M80 bond in controlling the cytc-CL interaction, by studying the binding of the Met80Ala (M80A) variant of S. cerevisiae iso-1 cytc (ycc) to CL liposomes in comparison with the wt protein [Paradisi et al. J. Biol. Inorg. Chem. 25 (2020) 467-487]. The results show that the integrity of the six-coordinate heme center along with the distal heme site containing the Met80 ligand is a not requisite for cytc binding to CL. Indeed, deletion of the Fe - S(Met80) bond has a little impact on the mechanism of ycc-CL interaction, although it results in an increased heme accessibility to solvent and a reduced structural stability of the protein. In particular, M80A features a slightly tighter binding to CL at low CL/cytc ratios compared to wt ycc, possibly due to the lift of some constraints to the insertion of the CL acyl chains into the protein hydrophobic core. M80A binding to CL maintains the dependence on the CL-to-cytc mixing scheme displayed by the wt species.


Subject(s)
Methionine , Saccharomyces cerevisiae , Methionine/chemistry , Saccharomyces cerevisiae/metabolism , Cardiolipins/chemistry , Cytochromes c/chemistry , Heme/chemistry , Ligands , Racemethionine
3.
Biochemistry ; 62(3): 835-850, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36706455

ABSTRACT

The heme enzyme chlorite dismutase (Cld) catalyzes the degradation of chlorite to chloride and dioxygen. Many questions about the molecular reaction mechanism of this iron protein have remained unanswered, including the electronic nature of the catalytically relevant oxoiron(IV) intermediate and its interaction with the distal, flexible, and catalytically active arginine. Here, we have investigated the dimeric Cld from Cyanothece sp. PCC7425 (CCld) and two variants having the catalytic arginine R127 (i) hydrogen-bonded to glutamine Q74 (wild-type CCld), (ii) arrested in a salt bridge with a glutamate (Q74E), or (iii) being fully flexible (Q74V). Presented stopped-flow spectroscopic studies demonstrate the initial and transient appearance of Compound I in the reaction between CCld and chlorite at pH 5.0 and 7.0 and the dominance of spectral features of an oxoiron(IV) species (418, 528, and 551 nm) during most of the chlorite degradation period at neutral and alkaline pH. Arresting the R127 in a salt bridge delays chlorite decomposition, whereas increased flexibility accelerates the reaction. The dynamics of R127 does not affect the formation of Compound I mediated by hypochlorite but has an influence on Compound I stability, which decreases rapidly with increasing pH. The decrease in activity is accompanied by the formation of protein-based amino acid radicals. Compound I is demonstrated to oxidize iodide, chlorite, and serotonin but not hypochlorite. Serotonin is able to dampen oxidative damage and inactivation of CCld at neutral and alkaline pH. Presented data are discussed with respect to the molecular mechanism of Cld and the pronounced pH dependence of chlorite degradation.


Subject(s)
Arginine , Serotonin , Hydrogen-Ion Concentration , Kinetics
4.
Protein Sci ; 31(3): 591-601, 2022 03.
Article in English | MEDLINE | ID: mdl-34897841

ABSTRACT

Pseudomonas putida W619 is a soil Gram-negative bacterium commonly used in environmental studies thanks to its ability in degrading many aromatic compounds. Its genome contains several putative carbohydrate-active enzymes such as glycoside hydrolases and lytic polysaccharide monooxygenases (PMOs). In this study, we have heterologously produced in Escherichia coli and characterized a new enzyme belonging to the AA10 family, named PpAA10 (Uniprot: B1J2U9), which contains a chitin-binding type-4 module and showed activity toward ß-chitin. The active form of the enzyme was produced in E. coli exploiting the addition of a cleavable N-terminal His tag which ensured the presence of the copper-coordinating His as the first residue. Electron paramagnetic resonance spectroscopy showed signal signatures similar to those observed for the copper-binding site of chitin-cleaving PMOs. The protein was used to develop a versatile, highly sensitive, cost-effective and easy-to-apply method to detect PMO's activity exploiting attenuated total reflection-Fourier transform infrared spectroscopy and able to easily discriminate between different substrates.


Subject(s)
Mixed Function Oxygenases , Pseudomonas putida , Escherichia coli/genetics , Escherichia coli/metabolism , Mixed Function Oxygenases/chemistry , Polysaccharides/chemistry , Spectroscopy, Fourier Transform Infrared , Substrate Specificity
5.
J Biol Inorg Chem ; 25(3): 467-487, 2020 05.
Article in English | MEDLINE | ID: mdl-32189145

ABSTRACT

The interaction of cytochrome c with cardiolipin (CL) is a critical step in the initial stages of apoptosis and is mediated by a positively charged region on the protein surface comprising several lysine residues (site A). Here, the interaction of wt S. cerevisiae cytochrome c (ycc) and its K72A/K73A, K72A/K79A, K73A/K79A and K72A/K73A/K79A variants with CL was studied through UV-Vis and MCD spectroscopies at pH 7 and molecular dynamics (MD) simulations, to clarify the role of the mutated lysines. Moreover, the influence of the lipid to protein ratio on the interaction mechanism was investigated using low (0.5-10) and high (5-60) CL/ycc molar ratios, obtained with small and gradual or large and abrupt CL additions, respectively. Although all proteins bind to CL, switching from the native low-spin His/Met-ligated form to a low-spin bis-His conformer and to a high-spin species at larger CL concentrations, the two schemes of CL addition show relevant differences in the CL/ycc molar ratios at which the various conformers appear, due to differences in the interaction mechanism. Extended lipid anchorage and peripheral binding appear to prevail at low and high CL/ycc molar ratios, respectively. Simultaneous deletion of two or three surface positive charges from Site A does not abolish CL binding, but instead increases protein affinity for CL. MD calculations suggest this unexpected behavior results from the mutation-induced severe weakening of the H-bond connecting the Nε of His26 with the backbone oxygen of Glu44, which lowers the conformational stability compared to the wt species, overcoming the decreased surface electrostatic interaction.


Subject(s)
Alanine/chemistry , Cardiolipins/chemistry , Cytochromes c/chemistry , Lysine/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Alanine/genetics , Animals , Binding Sites , Cattle , Cytochromes c/genetics , Heart , Lysine/genetics , Molecular Dynamics Simulation , Molecular Structure , Mutation , Saccharomyces cerevisiae Proteins/genetics , Static Electricity , Surface Properties
6.
J Inorg Biochem ; 199: 110761, 2019 10.
Article in English | MEDLINE | ID: mdl-31325671

ABSTRACT

With >5000 annotated genes dye-decolorizing peroxidases (DyPs) represent a heme b peroxidase family of broad functional diversity. Bacterial B-class DyPs are poor peroxidases of unknown physiological function. Hydrogen peroxide efficiently mediates the rapid formation of Compound I in B-class DyPs, which, however, is stable and shows modest reactivity towards organic and inorganic electron donors. To understand these characteristics, we have investigated the redox thermodynamics of the one-electron reduction of the ferric high-spin form of wild-type B-class DyP from the pathogenic bacterium Klebsiella pneumoniae (KpDyP) and the variants D143A, R232A and D143A/R232A. These distal amino acids are fully conserved in all DyPs and play important roles in Compound I formation and maintenance of the heme cavity architecture and substrate access route(s). The E°' values of the respective redox couples Fe(III)/Fe(II) varied from -350 mV (wild-type KpDyP) to -299 mV (D143A/R232A) at pH 7.0. Variable-temperature spectroelectrochemical experiments revealed that the reduction reaction of B-class DyPs is enthalpically unfavored but entropically favored with significant differences in enthalpic and entropic contributions to E°' between the four proteins. Molecular dynamics simulations demonstrated the impact of solvent reorganization on the entropy change during reduction reaction and revealed the dynamics and restriction of substrate access channels. Obtained data are discussed with respect to the poor peroxidase activities of B-class DyPs and compared with heme peroxidases from other (super)families as well as with chlorite dismutases, which do not react with hydrogen peroxide but share a similar fold and heme cavity architecture.


Subject(s)
Peroxidases/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Electrochemistry , Molecular Dynamics Simulation , Oxidation-Reduction , Peroxidases/chemistry , Phylogeny , Thermodynamics
7.
Nat Commun ; 10(1): 1396, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30918256

ABSTRACT

Myoglobin, encoded by MB, is a small cytoplasmic globular hemoprotein highly expressed in cardiac myocytes and oxidative skeletal myofibers. Myoglobin binds O2, facilitates its intracellular transport and serves as a controller of nitric oxide and reactive oxygen species. Here, we identify a recurrent c.292C>T (p.His98Tyr) substitution in MB in fourteen members of six European families suffering from an autosomal dominant progressive myopathy with highly characteristic sarcoplasmic inclusions in skeletal and cardiac muscle. Myoglobinopathy manifests in adulthood with proximal and axial weakness that progresses to involve distal muscles and causes respiratory and cardiac failure. Biochemical characterization reveals that the mutant myoglobin has altered O2 binding, exhibits a faster heme dissociation rate and has a lower reduction potential compared to wild-type myoglobin. Preliminary studies show that mutant myoglobin may result in elevated superoxide levels at the cellular level. These data define a recognizable muscle disease associated with MB mutation.


Subject(s)
Inclusion Bodies/pathology , Muscle Fibers, Skeletal/pathology , Muscle Weakness/genetics , Muscular Diseases/genetics , Myocytes, Cardiac/pathology , Myoglobin/genetics , Adult , Female , Heart Failure/etiology , Heme/metabolism , Humans , Male , Middle Aged , Muscle Weakness/physiopathology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiopathology , Muscular Diseases/diagnostic imaging , Muscular Diseases/pathology , Muscular Diseases/physiopathology , Mutation , Oxygen/metabolism , Pedigree , Respiratory Insufficiency/etiology , Superoxides/metabolism , Tomography, X-Ray Computed , White People/genetics
8.
J Biol Chem ; 293(38): 14823-14838, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30072383

ABSTRACT

Dye-decolorizing peroxidases (DyPs) represent the most recently classified hydrogen peroxide-dependent heme peroxidase family. Although widely distributed with more than 5000 annotated genes and hailed for their biotechnological potential, detailed biochemical characterization of their reaction mechanism remains limited. Here, we present the high-resolution crystal structures of WT B-class DyP from the pathogenic bacterium Klebsiella pneumoniae (KpDyP) (1.6 Å) and the variants D143A (1.3 Å), R232A (1.9 Å), and D143A/R232A (1.1 Å). We demonstrate the impact of elimination of the DyP-typical, distal residues Asp-143 and Arg-232 on (i) the spectral and redox properties, (ii) the kinetics of heterolytic cleavage of hydrogen peroxide, (iii) the formation of the low-spin cyanide complex, and (iv) the stability and reactivity of an oxoiron(IV)porphyrin π-cation radical (Compound I). Structural and functional studies reveal that the distal aspartate is responsible for deprotonation of H2O2 and for the poor oxidation capacity of Compound I. Elimination of the distal arginine promotes a collapse of the distal heme cavity, including blocking of one access channel and a conformational change of the catalytic aspartate. We also provide evidence of formation of an oxoiron(IV)-type Compound II in KpDyP with absorbance maxima at 418, 527, and 553 nm. In summary, a reaction mechanism of the peroxidase cycle of B-class DyPs is proposed. Our observations challenge the idea that peroxidase activity toward conventional aromatic substrates is related to the physiological roles of B-class DyPs.


Subject(s)
Arginine/metabolism , Aspartic Acid/metabolism , Coloring Agents/metabolism , Hydrogen Peroxide/metabolism , Peroxidases/metabolism , Amino Acid Substitution , Catalysis , Catalytic Domain , Circular Dichroism , Color , Crystallography, X-Ray , Dimerization , Enzyme Stability , Heme/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Klebsiella pneumoniae/metabolism , Peroxidases/chemistry , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrophotometry, Ultraviolet
9.
J Biol Chem ; 293(4): 1330-1345, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29242189

ABSTRACT

Oxidation of halides and thiocyanate by heme peroxidases to antimicrobial oxidants is an important cornerstone in the innate immune system of mammals. Interestingly, phylogenetic and physiological studies suggest that homologous peroxidases are already present in mycetozoan eukaryotes such as Dictyostelium discoideum This social amoeba kills bacteria via phagocytosis for nutrient acquisition at its single-cell stage and for antibacterial defense at its multicellular stages. Here, we demonstrate that peroxidase A from D. discoideum (DdPoxA) is a stable, monomeric, glycosylated, and secreted heme peroxidase with homology to mammalian peroxidases. The first crystal structure (2.5 Å resolution) of a mycetozoan peroxidase of this superfamily shows the presence of a post-translationally-modified heme with one single covalent ester bond between the 1-methyl heme substituent and Glu-236. The metalloprotein follows the halogenation cycle, whereby compound I oxidizes iodide and thiocyanate at high rates (>108 m-1 s-1) and bromide at very low rates. It is demonstrated that DdPoxA is up-regulated and likely secreted at late multicellular development stages of D. discoideum when migrating slugs differentiate into fruiting bodies that contain persistent spores on top of a cellular stalk. Expression of DdPoxA is shown to restrict bacterial contamination of fruiting bodies. Structure and function of DdPoxA are compared with evolutionary-related mammalian peroxidases in the context of non-specific immune defense.


Subject(s)
Dictyostelium/enzymology , Heme Oxygenase (Decyclizing)/chemistry , Heme Oxygenase (Decyclizing)/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Catalysis , Dictyostelium/genetics , Heme Oxygenase (Decyclizing)/genetics , Oxidation-Reduction , Protozoan Proteins/genetics , Structure-Activity Relationship
10.
J Inorg Biochem ; 178: 70-86, 2018 01.
Article in English | MEDLINE | ID: mdl-29078150

ABSTRACT

Neuroglobin is a monomeric globin containing a six-coordinate heme b, expressed in the nervous system, which exerts an important neuroprotective role. In the human protein (hNgb), Cys46 and Cys55 form an intramolecular disulfide bond under oxidizing conditions, whose cleavage induces a helix-to-strand rearrangement of the CD loop that strengthens the bond between the heme iron and the distal histidine. Hence, it is conceivable that the intramolecular disulfide bridge modulates the functionality of human neuroglobin by controlling exogenous ligand binding. In this work, we investigated the influence of the Cys46/Cys55 disulfide bond on the redox properties and on the pH-dependent conformational equilibria of hNgb, using UV-vis spectroelectrochemistry, cyclic voltammetry, electronic absorption spectroscopy and magnetic circular dichroism (MCD). We found that the SS bridge significantly affects the heme Fe(III) to Fe(II) reduction enthalpy (ΔH°'rc) and entropy (ΔS°'rc), mostly as a consequence of changes in the reduction-induced solvent reorganization effects, without affecting the axial ligand-binding interactions and the polarity and electrostatics of the heme environment. Between pH3 and 12, the electronic properties of the heme of ferric hNgb are sensitive to five acid-base equilibria, which are scarcely affected by the Cys46/Cys55 disulfide bridge. The equilibria occurring at extreme pH values induce heme release, while those occurring between pH5 and 10 alter the electronic properties of the heme without modifying its axial coordination and low spin state. They involve the sidechains of non-coordinating aminoacids close to the heme and at least one heme propionate.


Subject(s)
Cysteine/chemistry , Disulfides/chemistry , Globins/chemistry , Nerve Tissue Proteins/chemistry , Spectrum Analysis , Electrochemistry , Globins/analysis , Heme/chemistry , Humans , Hydrogen-Ion Concentration , Models, Molecular , Nerve Tissue Proteins/analysis , Neuroglobin , Oxidation-Reduction , Spectrometry, Fluorescence , Thermodynamics
11.
ACS Catal ; 7(11): 7962-7976, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29142780

ABSTRACT

The heme enzyme chlorite dismutase (Cld) catalyzes the degradation of chlorite to chloride and dioxygen. Although structure and steady-state kinetics of Clds have been elucidated, many questions remain (e.g., the mechanism of chlorite cleavage and the pH dependence of the reaction). Here, we present high-resolution X-ray crystal structures of a dimeric Cld at pH 6.5 and 8.5, its fluoride and isothiocyanate complexes and the neutron structure at pH 9.0 together with the pH dependence of the Fe(III)/Fe(II) couple, and the UV-vis and resonance Raman spectral features. We demonstrate that the distal Arg127 cannot act as proton acceptor and is fully ionized even at pH 9.0 ruling out its proposed role in dictating the pH dependence of chlorite degradation. Stopped-flow studies show that (i) Compound I and hypochlorite do not recombine and (ii) Compound II is the immediately formed redox intermediate that dominates during turnover. Homolytic cleavage of chlorite is proposed.

12.
Biochemistry ; 56(34): 4525-4538, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28762722

ABSTRACT

The existence of covalent heme to protein bonds is the most striking structural feature of mammalian peroxidases, including myeloperoxidase and lactoperoxidase (LPO). These autocatalytic posttranslational modifications (PTMs) were shown to strongly influence the biophysical and biochemical properties of these oxidoreductases. Recently, we reported the occurrence of stable LPO-like counterparts with two heme to protein ester linkages in bacteria. This study focuses on the model wild-type peroxidase from the cyanobacterium Lyngbya sp. PCC 8106 (LspPOX) and the mutants D109A, E238A, and D109A/E238A that could be recombinantly produced as apoproteins in Escherichia coli, fully reconstituted to the respective heme b proteins, and posttranslationally modified by hydrogen peroxide. This for the first time allows not only a direct comparison of the catalytic properties of the heme b and PTM forms but also a study of the impact of D109 and E238 on PTM and catalysis, including Compound I formation and the two-electron reduction of Compound I by bromide, iodide, and thiocyanate. It is demonstrated that both heme to protein ester bonds can form independently and that elimination of E238, in contrast to exchange of D109, does not cause significant structural rearrangements or changes in the catalytic properties neither in heme b nor in the PTM form. The obtained findings are discussed with respect to published structural and functional data of human peroxidases.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/enzymology , Heme/metabolism , Peroxidase/metabolism , Protein Processing, Post-Translational/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalysis , Heme/chemistry , Heme/genetics , Ligands , Peroxidase/chemistry , Peroxidase/genetics
13.
J Biol Chem ; 292(11): 4583-4592, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28154175

ABSTRACT

Human peroxidasin 1 is a homotrimeric multidomain peroxidase that is secreted to the extracellular matrix. The heme enzyme was shown to release hypobromous acid that mediates the formation of specific covalent sulfilimine bonds to reinforce collagen IV in basement membranes. Maturation by proteolytic cleavage is known to activate the enzyme. Here, we present the first multimixing stopped-flow study on a fully functional truncated variant of human peroxidasin 1 comprising four immunoglobulin-like domains and the catalytically active peroxidase domain. The kinetic data unravel the so far unknown substrate specificity and mechanism of halide oxidation of human peroxidasin 1. The heme enzyme is shown to follow the halogenation cycle that is induced by the rapid H2O2-mediated oxidation of the ferric enzyme to the redox intermediate compound I. We demonstrate that chloride cannot act as a two-electron donor of compound I, whereas thiocyanate, iodide, and bromide efficiently restore the ferric resting state. We present all relevant apparent bimolecular rate constants, the spectral signatures of the redox intermediates, and the standard reduction potential of the Fe(III)/Fe(II) couple, and we demonstrate that the prosthetic heme group is post-translationally modified and cross-linked with the protein. These structural features provide the basis of human peroxidasin 1 to act as an effective generator of hypobromous acid, which mediates the formation of covalent cross-links in collagen IV.


Subject(s)
Extracellular Matrix Proteins/metabolism , Peroxidase/metabolism , Bromides/metabolism , Catalytic Domain , Chlorides/metabolism , Collagen Type IV/metabolism , Extracellular Matrix Proteins/chemistry , Ferric Compounds/metabolism , Halogenation , Humans , Hydrogen Peroxide/metabolism , Iodides/metabolism , Kinetics , Oxidation-Reduction , Peroxidase/chemistry , Protein Domains , Substrate Specificity , Thiocyanates/metabolism , Peroxidasin
14.
Mol Microbiol ; 96(5): 1053-68, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25732258

ABSTRACT

It is demonstrated that cyanobacteria (both azotrophic and non-azotrophic) contain heme b oxidoreductases that can convert chlorite to chloride and molecular oxygen (incorrectly denominated chlorite 'dismutase', Cld). Beside the water-splitting manganese complex of photosystem II, this metalloenzyme is the second known enzyme that catalyses the formation of a covalent oxygen-oxygen bond. All cyanobacterial Clds have a truncated N-terminus and are dimeric (i.e. clade 2) proteins. As model protein, Cld from Cyanothece sp. PCC7425 (CCld) was recombinantly produced in Escherichia coli and shown to efficiently degrade chlorite with an activity optimum at pH 5.0 [kcat 1144 ± 23.8 s(-1), KM 162 ± 10.0 µM, catalytic efficiency (7.1 ± 0.6) × 10(6) M(-1) s(-1)]. The resting ferric high-spin axially symmetric heme enzyme has a standard reduction potential of the Fe(III)/Fe(II) couple of -126 ± 1.9 mV at pH 7.0. Cyanide mediates the formation of a low-spin complex with k(on) = (1.6 ± 0.1) × 10(5) M(-1) s(-1) and k(off) = 1.4 ± 2.9 s(-1) (KD ∼ 8.6 µM). Both, thermal and chemical unfolding follows a non-two-state unfolding pathway with the first transition being related to the release of the prosthetic group. The obtained data are discussed with respect to known structure-function relationships of Clds. We ask for the physiological substrate and putative function of these O2 -producing proteins in (nitrogen-fixing) cyanobacteria.


Subject(s)
Chlorides/metabolism , Cyanothece/enzymology , Cyanothece/genetics , Cyanothece/metabolism , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Biocatalysis , Cyanides/metabolism , Escherichia coli/genetics , Heme , Kinetics , Models, Molecular , Oxidoreductases/isolation & purification , Oxygen/metabolism , Phylogeny , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
15.
J Biol Chem ; 290(17): 10876-90, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25713063

ABSTRACT

Human peroxidasin 1 (hsPxd01) is a multidomain heme peroxidase that uses bromide as a cofactor for the formation of sulfilimine cross-links. The latter confers critical structural reinforcement to collagen IV scaffolds. Here, hsPxd01 and various truncated variants lacking nonenzymatic domains were recombinantly expressed in HEK cell lines. The N-glycosylation site occupancy and disulfide pattern, the oligomeric structure, and unfolding pathway are reported. The homotrimeric iron protein contains a covalently bound ferric high spin heme per subunit with a standard reduction potential of the Fe(III)/Fe(II) couple of -233 ± 5 mV at pH 7.0. Despite sequence homology at the active site and biophysical properties similar to human peroxidases, the catalytic efficiency of bromide oxidation (kcat/KM(app)) of full-length hsPxd01 is rather low but increased upon truncation. This is discussed with respect to its structure and proposed biosynthetic function in collagen IV cross-linking.


Subject(s)
Antigens, Neoplasm/chemistry , Collagen Type IV/chemistry , Iron/chemistry , Receptors, Interleukin-1/chemistry , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Catalysis , Collagen Type IV/genetics , Collagen Type IV/metabolism , Glycosylation , HEK293 Cells , Humans , Iron/metabolism , Oxidation-Reduction , Peroxidases , Protein Structure, Tertiary , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Structure-Activity Relationship
16.
Biochemistry ; 53(1): 77-89, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24364531

ABSTRACT

Chlorite dismutases (Clds) are heme b containing oxidoreductases that convert chlorite to chloride and molecular oxygen. In order to elucidate the role of conserved heme cavity residues in the catalysis of this reaction comprehensive mutational and biochemical analyses of Cld from "Candidatus Nitrospira defluvii" (NdCld) were performed. Particularly, point mutations of the cavity-forming residues R173, K141, W145, W146, and E210 were performed. The effect of manipulation in 12 single and double mutants was probed by UV-vis spectroscopy, spectroelectrochemistry, pre-steady-state and steady-state kinetics, and X-ray crystallography. Resulting biochemical data are discussed with respect to the known crystal structure of wild-type NdCld and the variants R173A and R173K as well as the structures of R173E, W145V, W145F, and the R173Q/W146Y solved in this work. The findings allow a critical analysis of the role of these heme cavity residues in the reaction mechanism of chlorite degradation that is proposed to involve hypohalous acid as transient intermediate and formation of an O═O bond. The distal R173 is shown to be important (but not fully essential) for the reaction with chlorite, and, upon addition of cyanide, it acts as a proton acceptor in the formation of the resulting low-spin complex. The proximal H-bonding network including K141-E210-H160 keeps the enzyme in its ferric (E°' = -113 mV) and mainly five-coordinated high-spin state and is very susceptible to perturbation.


Subject(s)
Heme/chemistry , Oxidoreductases/chemistry , Oxidoreductases/genetics , Oxidoreductases/metabolism , Chlorides/metabolism , Crystallography, X-Ray , Cyanides/chemistry , Electrochemistry , Kinetics , Models, Molecular , Oxidation-Reduction
17.
J Biol Chem ; 288(38): 27181-27199, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23918925

ABSTRACT

Reconstructing the phylogenetic relationships of the main evolutionary lines of the mammalian peroxidases lactoperoxidase and myeloperoxidase revealed the presence of novel bacterial heme peroxidase subfamilies. Here, for the first time, an ancestral bacterial heme peroxidase is shown to possess a very high bromide oxidation activity (besides conventional peroxidase activity). The recombinant protein allowed monitoring of the autocatalytic peroxide-driven formation of covalent heme to protein bonds. Thereby, the high spin ferric rhombic heme spectrum became similar to lactoperoxidase, the standard reduction potential of the Fe(III)/Fe(II) couple shifted to more positive values (-145 ± 10 mV at pH 7), and the conformational and thermal stability of the protein increased significantly. We discuss structure-function relationships of this new peroxidase in relation to its mammalian counterparts and ask for its putative physiological role.


Subject(s)
Bacterial Proteins/chemistry , Bromides/chemistry , Cyanobacteria/enzymology , Heme/chemistry , Peroxidase/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bromides/metabolism , Cyanobacteria/genetics , Enzyme Stability/physiology , Heme/genetics , Heme/metabolism , Hydrogen-Ion Concentration , Oxidation-Reduction , Peroxidase/genetics , Peroxidase/metabolism
18.
Biochemistry ; 51(47): 9501-12, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23126649

ABSTRACT

Chlorite dismutases (Clds) are heme b-containing oxidoreductases that convert chlorite to chloride and dioxygen. In this work, the thermodynamics of the one-electron reduction of the ferric high-spin forms and of the six-coordinate low-spin cyanide adducts of the enzymes from Nitrobacter winogradskyi (NwCld) and Candidatus "Nitrospira defluvii" (NdCld) were determined through spectroelectrochemical experiments. These proteins belong to two phylogenetically separated lineages that differ in subunit (21.5 and 26 kDa, respectively) and oligomeric (dimeric and pentameric, respectively) structure but exhibit similar chlorite degradation activity. The E°' values for free and cyanide-bound proteins were determined to be -119 and -397 mV for NwCld and -113 and -404 mV for NdCld, respectively (pH 7.0, 25 °C). Variable-temperature spectroelectrochemical experiments revealed that the oxidized state of both proteins is enthalpically stabilized. Molecular dynamics simulations suggest that changes in the protein structure are negligible, whereas solvent reorganization is mainly responsible for the increase in entropy during the redox reaction. Obtained data are discussed with respect to the known structures of the two Clds and the proposed reaction mechanism.


Subject(s)
Oxidoreductases/chemistry , Catalytic Domain , Chlorides , Electron Spin Resonance Spectroscopy , Entropy , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Models, Molecular , Molecular Dynamics Simulation , Nitrobacter/enzymology , Oxidation-Reduction , Oxidoreductases/metabolism , Protein Conformation , Protein Structure, Quaternary , Thermodynamics
19.
Biochemistry ; 51(30): 5967-78, 2012 Jul 31.
Article in English | MEDLINE | ID: mdl-22775438

ABSTRACT

The low-pH conformational equilibria of ferric yeast iso-1 cytochrome c (ycc) and its M80A, M80A/Y67H, and M80A/Y67A variants were studied from pH 7 to 2 at low ionic strength through electronic absorption, magnetic circular dichroism, and resonance Raman spectroscopies. For wild-type ycc, the protein structure, axial heme ligands, and spin state of the iron atom convert from the native folded His/Met low-spin (LS) form to a molten globule His/H(2)O high-spin (HS) form and a totally unfolded bis-aquo HS state, in a single cooperative transition with an apparent pK(a) of ~3.0. An analogous cooperative transition occurs for the M80A and M80A/Y67H variants. This is preceded by protonation of heme propionate-7, with a pK(a) of ~4.2, and by an equilibrium between a His/OH(-)-ligated LS and a His/H(2)O-ligated HS conformer, with a pK(a) of ~5.9. In the M80A/Y67A variant, the cooperative low-pH transition is split into two distinct processes because of an increased stability of the molten globule state that is formed at higher pH values than the other species. These data show that removal of the axial methionine ligand does not significantly alter the mechanism of acidic unfolding and the ranges of stability of low-pH conformers. Instead, removal of a hydrogen bonding partner at position 67 increases the stability of the molten globule and renders cytochrome c more susceptible to acid unfolding. This underlines the key role played by Tyr67 in stabilizing the three-dimensional structure of cytochrome c by means of the hydrogen bonding network connecting the Ω loops formed by residues 71-85 and 40-57.


Subject(s)
Cytochromes c/physiology , Methionine/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Tyrosine/chemistry , Cytochromes c/chemistry , Hydrogen-Ion Concentration , Methionine/physiology , Protein Conformation , Protein Unfolding , Saccharomyces cerevisiae Proteins/physiology , Tyrosine/physiology
20.
Biochimie ; 94(3): 673-83, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21971530

ABSTRACT

All phytopathogenic fungi have two catalase-peroxidase paralogues located either intracellularly (KatG1) or extracellularly (KatG2). Here, for the first time a secreted bifunctional, homodimeric catalase-peroxidase (KatG2 from the rice blast fungus Magnaporthe grisea) has been produced heterologously with almost 100% heme occupancy and comprehensively investigated by using a broad set of methods including UV-Vis, ECD and resonance Raman spectroscopy (RR), thin-layer spectroelectrochemistry, mass spectrometry, steady-state & presteady-state spectroscopy. RR spectroscopy reveals that MagKatG2 shows a unique mixed-spin state, non-planar heme b, and a proximal histidine with pronounced imidazolate character. At pH 7.0 and 25 °C, the standard reduction potential E°' of the Fe(III)/Fe(II) couple for the high-spin native protein was found to fall in the range typical for the KatG family. Binding of cyanide was relatively slow at pH 7.0 and 25 °C and with a K(d) value significantly higher than for the intracellular counterpart. Demonstrated by mass spectrometry MagKatG2 has the typical Trp118-Tyr251-Met277 adduct that is essential for its predominantly catalase activity at the unique acidic pH optimum. In addition, MagKatG2 acts as a versatile peroxidase using both one- and two-electron donors. Based on these data, structure-function relationships of extracellular eukaryotic KatGs are discussed with respect to intracellular KatGs and possible role(s) in host-pathogen interaction.


Subject(s)
Catalase/chemistry , Catalase/metabolism , Magnaporthe/enzymology , Peroxidases/chemistry , Peroxidases/metabolism , Catalase/classification , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Magnaporthe/metabolism , Oxidative Stress , Peroxidases/classification , Phylogeny , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...