Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biosensors (Basel) ; 12(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36551058

ABSTRACT

Despite the remarkable development related to Point-of-Care devices based on optical technology, their difficulties when used outside of research laboratories are notable. In this sense, it would be interesting to ask ourselves what the degree of transferability of the research work to the market is, for example, by analysing the relation between the scientific work developed and the registered one, through patent. In this work, we provide an overview of the state-of-the-art in the sector of optical Point-of-Care devices, not only in the research area but also regarding their transfer to market. To this end, we explored a methodology for searching articles and patents to obtain an indicator that relates to both. This figure of merit to estimate this transfer is based on classifying the relevant research articles in the area and the patents that have been generated from these ones. To delimit the scope of this study, we researched the results of a large enough number of publications in the period from 2015 to 2020, by using keywords "biosensor", "optic", and "device" to obtain the most representative articles from Web of Science and Scopus. Then, we classified them according to a particular classification of the optical PoC devices. Once we had this sampling frame, we defined a patent search strategy to cross-link the article with a registered patent (by surfing Google Patents) and classified them accordingly to the categories described. Finally, we proposed a relative figure called Index of Technology Transference (IoTT), which estimates to what extent our findings in science materialized in published articles are protected by patent.


Subject(s)
Point-of-Care Systems , Technology Transfer , Biotechnology
2.
Cell Microbiol ; 22(1): e13137, 2020 01.
Article in English | MEDLINE | ID: mdl-31701646

ABSTRACT

DLH1, the Candida albicans orthologue of the meiosis-specific recombinase DMC1 was expressed during the mitotic cycle. In contrast to rad51-ΔΔ that displayed reduced growth rate and severe susceptibility to DNA-damaging agents, dlh1-ΔΔ behaved as wild type (WT), rad51-ΔΔ being was epistatic to dlh1-ΔΔ. However, dlh1-ΔΔ showed an increased frequency of spontaneous loss-of-heterozygosity (LOH) at the HIS4/his4 (Chr4) locus. For both WT and dlh1-ΔΔ, His auxotrophs arose via Chr4 loss and interhomologue recombination whereas rad51-ΔΔ and rad51-ΔΔ dlh1-ΔΔ His− segregants were formed mainly by chromosome loss and truncation. A few rad51-ΔΔ, but not rad51-ΔΔ dlh1-ΔΔ, segregants showed interhomologue recombination. LOH events at the GAL1/URA3 locus (Chr1; URA3 substitutes one GAL1 allele) in WT and dlh1-ΔΔ involved mainly long tracts of DNA. A few short-tract LOH events were detected in WT but not in dlh1-ΔΔ, and this dlh1-ΔΔ phenotype was partially complemented by a WT DLH1 allele. Long-tract LOH events were also predominant in rad51-ΔΔ, but about half of them arose via chromosome truncation. We suggest that Dlh1, which conserves the Dmc1 lineage-specific amino acid residues, can promote strand invasion and might regulate in combination with Rad51 the length of the conversion tracts and the relative frequencies of mitotic non-crossovers in C. albicans.


Subject(s)
Candida albicans/genetics , Cell Cycle Proteins/genetics , DNA Repair , DNA-Binding Proteins/genetics , Fungal Proteins/genetics , Recombination, Genetic , Biocatalysis , Candida albicans/physiology , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Fungal Proteins/metabolism , Meiosis/genetics , Mitosis/genetics
3.
G3 (Bethesda) ; 9(11): 3631-3644, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31690596

ABSTRACT

Candida albicans, the most common fungal pathogen, is a diploid with a genome that is rich in repeats and has high levels of heterozygosity. To study the role of different recombination pathways on direct-repeat recombination, we replaced either allele of the RAD52 gene (Chr6) with the URA-blaster cassette (hisG-URA3-hisG), measured rates of URA3 loss as resistance to 5-fluoroorotic acid (5FOAR) and used CHEF Southern hybridization and SNP-RFLP analysis to identify recombination mechanisms and their frequency in wildtype and recombination mutants. FOAR rates varied little across different strain backgrounds. In contrast, the type and frequency of mechanisms underlying direct repeat recombination varied greatly. For example, wildtype, rad59 and lig4 strains all displayed a bias for URA3 loss via pop-out/deletion vs. inter-homolog recombination and this bias was reduced in rad51 mutants. In addition, in rad51-derived 5FOAR strains direct repeat recombination was associated with ectopic translocation (5%), chromosome loss/truncation (14%) and inter-homolog recombination (6%). In the absence of RAD52, URA3 loss was mostly due to chromosome loss and truncation (80-90%), and the bias of retained allele frequency points to the presence of a recessive lethal allele on Chr6B. However, a few single-strand annealing (SSA)-like events were identified and these were independent of either Rad59 or Lig4. Finally, the specific sizes of Chr6 truncations suggest that the inserted URA-blaster could represent a fragile site.


Subject(s)
Candida albicans/genetics , Recombination, Genetic , DNA Ligase ATP/genetics , DNA, Fungal/genetics , DNA-Binding Proteins/genetics , Fungal Proteins/genetics , Mitosis , Mutation
4.
Genes (Basel) ; 9(9)2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30205450

ABSTRACT

Candida albicans mutants deficient in homologous recombination (HR) are extremely sensitive to the alkylating agent methyl-methane-sulfonate (MMS). Here, we have investigated the role of HR genes in the protection and repair of C. albicans chromosomes by taking advantage of the heat-labile property (55 °C) of MMS-induced base damage. Acute MMS treatments of cycling cells caused chromosome fragmentation in vitro (55 °C) due to the generation of heat-dependent breaks (HDBs), but not in vivo (30 °C). Following removal of MMS wild type, cells regained the chromosome ladder regardless of whether they were transferred to yeast extract/peptone/dextrose (YPD) or to phosphate buffer saline (PBS); however, repair of HDB/chromosome restitution was faster in YPD, suggesting that it was accelerated by metabolic energy and further fueled by the subsequent overgrowth of survivors. Compared to wild type CAI4, chromosome restitution in YPD was not altered in a Carad59 isogenic derivative, whereas it was significantly delayed in Carad51 and Carad52 counterparts. However, when post-MMS incubation took place in PBS, chromosome restitution in wild type and HR mutants occurred with similar kinetics, suggesting that the exquisite sensitivity of Carad51 and Carad52 mutants to MMS is due to defective fork restart. Overall, our results demonstrate that repair of HDBs by resting cells of C. albicans is rather independent of CaRad51, CaRad52, and CaRad59, suggesting that it occurs mainly by base excision repair (BER).

5.
Cell Microbiol ; 20(12): e12950, 2018 12.
Article in English | MEDLINE | ID: mdl-30171781

ABSTRACT

We have analysed the role of homologous recombination (HR) genes on the repair of double-strand breaks induced by γ-ionising radiation in Candida albicans. Depletion of either CaRad51 or CaRad52 caused a dramatic drop in the number of survivors compared with wild type, whereas depletion of CaRad59 caused a moderate decrease. Besides, compared with Saccharomyces cerevisiae, C. albicans relies more on HR proteins for repair of ionising radiation lesions. Pulse-field electrokaryotypes of survivors identified genetic alterations mainly in the form of aneuploidy in HR mutants and chromosome length polymorphism and ectopic translocation in wild type. Increasing irradiation (4 to 80 krad) of both cycling and nocodazole-treated (G2/M-arrested) cells revealed a gradual loss of chromosomes, larger chromosomes being more affected than smaller ones. For cycling wild-type cells, shattered chromosomes were progressively restored following incubation in yeast extract, peptone, dextrose medium, but not in phosphate-buffered saline, and this accompanied by a moderate increase in colony-forming units, suggesting that repair was followed by replication of survivors. Irradiated G2/M arrested cells from wild type but not from HR mutants partially restored the chromosome ladder following incubation (4-8 hr) in yeast peptone dextrose-nocodazole. However, HR mutants showed a chromosome shattering pattern similar to wild type, an indication that lesions other than double-strand breaks, likely single-strand break, are responsible for their drastically reduced survivability.


Subject(s)
Candida albicans/genetics , Candida albicans/radiation effects , DNA Repair/genetics , Fungal Proteins/genetics , Candida albicans/cytology , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Cycle Checkpoints/radiation effects , Chromosome Aberrations , DNA Breaks, Double-Stranded/radiation effects , DNA Repair/radiation effects , Gamma Rays , Homologous Recombination , Nocodazole/pharmacology , Rad51 Recombinase/genetics , Rad52 DNA Repair and Recombination Protein/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/radiation effects
6.
J Med Syst ; 42(6): 100, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29663087

ABSTRACT

The aim of this study is to review the current tools for the assessment of stress response in humans, ranging from the use of psychological questionnaires to the latest tools involving portable digital devices. Practical implications in educational context are further discussed.


Subject(s)
Heart Rate , Monitoring, Ambulatory/instrumentation , Remote Sensing Technology/instrumentation , Stress, Psychological/physiopathology , Humans
7.
Microb Drug Resist ; 24(7): 1031-1039, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29267134

ABSTRACT

Candida sp. are found as part of the commensal flora in humans but can cause invasive candidiasis in patients with severe underlying disease, especially cancer patients. These patients are frequently subjected to nonsurgical anticancer treatments such as ionizing radiation and anticancer drugs, which kill proliferating human cells by damaging DNA but also affect the microbiota of the patient. C. tropicalis, an emerging fungal pathogen, is associated with high mortality rates of cancer patients especially in tropical regions. In this study, we have investigated the in vitro susceptibility of 38 C. tropicalis clinical isolates from several Mexican hospitals to chronic treatments with several DNA damaging agents, including oxidizing compounds and anticancer drugs. C. tropicalis isolates displayed a high variability in their susceptibility to hydrogen peroxide (H2O2) while showing a high susceptibility to bleomycin (BLM), an anticancer drug that causes double-strand breaks in DNA. This contrasted with the moderate-to-high resistance exhibited by several C. albicans laboratory strains. At least for the C. tropicalis reference strain MYA3404, this susceptibility was hardly modified by the presence of serum. Our results open the possibility of using susceptibility to BLM to differentiate between C. tropicalis and C. albicans; however, analysis of a larger number of isolates is required. The use of BLM for prevention of C. tropicalis infections in neutropenic patients with cancer should be also evaluated. Finally, the variable susceptibility to H2O2 might be due to allelic variation of the histone acetyl-transferase complex which modulates the induction kinetics of H2O2-induced genes in C. tropicalis.


Subject(s)
Antifungal Agents/pharmacology , Bleomycin/pharmacology , Candida tropicalis/drug effects , Candida tropicalis/isolation & purification , Hydrogen Peroxide/pharmacology , Antibiotics, Antineoplastic/pharmacology , Antineoplastic Agents/pharmacology , Candida albicans/drug effects , Candidiasis/drug therapy , Candidiasis/microbiology , Cell Proliferation/drug effects , DNA Breaks, Double-Stranded/drug effects , DNA Damage/drug effects , Drug Resistance, Fungal/drug effects , Humans , Microbial Sensitivity Tests
8.
Genetics ; 203(3): 1161-76, 2016 07.
Article in English | MEDLINE | ID: mdl-27206717

ABSTRACT

By testing the susceptibility to DNA damaging agents of several Candida albicans mutant strains derived from the commonly used laboratory strain, CAI4, we uncovered sensitivity to methyl methanesulfonate (MMS) in CAI4 and its derivatives, but not in CAF2-1. This sensitivity is not a result of URA3 disruption because the phenotype was not restored after URA3 reintroduction. Rather, we found that homozygosis of a short region of chromosome 3R (Chr3R), which is naturally heterozygous in the MMS-resistant-related strains CAF4-2 and CAF2-1, confers MMS sensitivity and modulates growth polarization in response to MMS. Furthermore, induction of homozygosity in this region in CAF2-1 or CAF4-2 resulted in MMS sensitivity. We identified 11 genes by SNP/comparative genomic hybridization containing only the a alleles in all the MMS-sensitive strains. Four candidate genes, SNF5, POL1, orf19.5854.1, and MBP1, were analyzed by generating hemizygous configurations in CAF2-1 and CAF4-2 for each allele of all four genes. Only hemizygous MBP1a/mbp1b::SAT1-FLIP strains became MMS sensitive, indicating that MBP1a in the homo- or hemizygosis state was sufficient to account for the MMS-sensitive phenotype. In yeast, Mbp1 regulates G1/S genes involved in DNA repair. A second region of homozygosis on Chr2L increased MMS sensitivity in CAI4 (Chr3R homozygous) but not CAF4-2 (Chr3R heterozygous). This is the first example of sign epistasis in C. albicans.


Subject(s)
Candida albicans/genetics , Epistasis, Genetic , Fungal Proteins/genetics , Loss of Heterozygosity/genetics , Alleles , Antifungal Agents/toxicity , Candida albicans/drug effects , Comparative Genomic Hybridization , DNA Damage/drug effects , DNA Repair/drug effects , Fungal Proteins/biosynthesis , Gene Expression Regulation, Fungal/drug effects , Loss of Heterozygosity/drug effects , Methyl Methanesulfonate/toxicity , Polymorphism, Single Nucleotide
9.
J Med Syst ; 40(6): 148, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27129313

ABSTRACT

Research in Psychology usually requires to build and run experiments. However, although this task has required scripting, recent computer tools based on graphical interfaces offer new opportunities in this field for researchers with non-programming skills. The purpose of this study is to illustrate and provide a comparative overview of two of the main free open source "point and click" software packages for building and running experiments in Psychology: PsychoPy and OpenSesame. Recommendations for their potential use are further discussed.


Subject(s)
Computers , Psychology , User-Computer Interface , Programming Languages , Research
10.
Fungal Genet Biol ; 74: 10-20, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25445312

ABSTRACT

rad52-ΔΔ and, to a lesser extent, rad51-ΔΔ deletants of Candidaalbicans displayed slow growth and aberrant filamentous morphology whereas rad59-ΔΔ mutants, both by growth rate and morphology resembled wild type. In this study, we have constructed pair-wise double deletants to analyze genetic interactions among these homologous recombination (HR) proteins that affect growth and morphology traits. When grown in liquid YPD medium, double mutant rad51-ΔΔ rad59-ΔΔ exhibited growth rates, cell and colony morphologies, and plating efficiencies that were not significantly different from those observed for rad51-ΔΔ. The same was true for rad52-ΔΔ rad59-ΔΔ compared to rad52-ΔΔ. Slow growth and decreased plating efficiency were caused, at least in part, by a decreased viability, as deduced from FUN1 staining. Flow cytometry and microscopic studies of filamentous mutant populations revealed major changes in cell ploidy, size and morphology, whereas DAPI staining identified complex nuclear rearrangements in yeast and filamentous cells. These phenotypes were not observed in the rad59-ΔΔ mutant populations. Our results show that abolishing Rad51 functions induces the appearance of a subpopulation of aberrant yeast and filamentous forms with increased cell size and ploidy. The size of this complex subpopulation was exacerbated in rad52-ΔΔ mutants. The combination of filamentous cell morphology and viability phenotypes was reflected on the colony morphology of the respective mutants. We conclude that the rad52 mutation is epistatic to rad51 for all the morphological traits analyzed. We discuss these results in the light of the several functions of these recombination genes.


Subject(s)
Candida albicans/genetics , Epistasis, Genetic , Fungal Proteins/genetics , Homologous Recombination , Mutation , Ploidies , Rad51 Recombinase/genetics , Rad52 DNA Repair and Recombination Protein/genetics , Candida albicans/cytology , Cell Proliferation , Cell Size , Cell Survival , Chromosome Aberrations , Flow Cytometry , Gene Knockout Techniques , Microscopy , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
11.
FEMS Yeast Res ; 13(5): 441-52, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23566019

ABSTRACT

Yarrowia lipolytica (Yl) is a dimorphic fungus that has become a well-established model for a number of biological processes, including secretion of heterologous and chimerical proteins. However, little is known on the recombination machinery responsible for the integration in the genome of the exogenous DNA encoding for those proteins. We have carried out a phenotypic analysis of rad52 deletants of Y. lipolytica. YlRad52 exhibited 20-30% identity with Rad52 homologues of other eukaryotes, including Saccharomyces cerevisiae and Candida albicans. Ylrad52-Δ strains formed colonies on YPD-agar plates which were spinier and smaller than those from wild type, whereas in YPD liquid cultures they exhibited a decreased grow rate and contained cells with aberrant morphology and fragmented chromatin, supporting a role for homologous recombination (HR) in genome stability under nondamaging conditions. In addition, Ylrad52 mutants showed moderate to high sensitivity to UV light, oxidizing agents and compounds that cause single- (SSB) and double-strand breaks (DSB), indicating an important role for Rad52 in DNA repair. These findings extend to Yl previous observations indicating that RAD52 is a crucial gene for DNA repair in other fungi, including S. cerevisiae, C. albicans and Schizosaccharomyces pombe.


Subject(s)
DNA Repair , DNA, Fungal/genetics , Rad52 DNA Repair and Recombination Protein/genetics , Yarrowia/genetics , Amino Acid Sequence , Candida albicans/genetics , DNA Damage , DNA-Binding Proteins/genetics , Fungal Proteins/genetics , Molecular Sequence Data , Recombination, Genetic , Saccharomyces cerevisiae/genetics , Schizosaccharomyces/genetics , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...