Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Mol Ther ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38796707

ABSTRACT

Lafora disease is a rare and fatal form of progressive myoclonic epilepsy typically occurring early in adolescence. The disease results from mutations in the EPM2A gene, encoding laforin, or the EPM2B gene, encoding malin. Laforin and malin work together in a complex to control glycogen synthesis and prevent the toxicity produced by misfolded proteins via the ubiquitin-proteasome system. Disruptions in either protein cause alterations in this complex, leading to the formation of Lafora bodies containing abnormal, insoluble, and hyperphosphorylated forms of glycogen. We used the Epm2a-/- knock-out mouse model of Lafora disease to apply gene therapy by administering intracerebroventricular injections of a recombinant adeno-associated virus carrying the human EPM2A gene. We evaluated the effects of this treatment through neuropathological studies, behavioral tests, video-electroencephalography, electrophysiological recordings, and proteomic/phosphoproteomic analysis. Gene therapy ameliorated neurological and histopathological alterations, reduced epileptic activity and neuronal hyperexcitability, and decreased the formation of Lafora bodies. Moreover, differential quantitative proteomics and phosphoproteomics revealed beneficial changes in various molecular pathways altered in Lafora disease. Our results represent proof-of-principle for gene therapy with the coding region of the human EPM2A gene as a treatment for EPM2A related Lafora disease.

2.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338656

ABSTRACT

Amyloid beta 1-42 (Aß42) aggregates acutely impair hippocampal long-term potentiation (LTP) of synaptic transmission, and 17ß-estradiol is crucial for hippocampal LTP. We tested whether boosting the synthesis of neural-derived 17ß-estradiol (nE2) saves hippocampal LTP by the neurotoxic action of Aß42. Electrophysiological recordings were performed to measure dentate gyrus (DG) LTP in rat hippocampal slices. Using a pharmacological approach, we tested the ability of nE2 to counteract the LTP impairment caused by acute exposure to soluble Aß42 aggregates. nE2 was found to be required for LTP in DG under physiological conditions. Blockade of steroid 5α-reductase with finasteride, by increasing nE2 synthesis from testosterone (T), completely recovered LTP in slices treated with soluble Aß42 aggregates. Modulation of the glutamate N-methyl-D aspartate receptor (NMDAR) by memantine effectively rescued the LTP deficit observed in slices exposed to Aß42, and memantine prevented LTP reduction observed under the blocking of nE2 synthesis. nE2 is able to counteract Aß42-induced synaptic dysfunction. This effect depends on a rapid, non-genomic mechanism of action of nE2, which may share a common pathway with glutamate NMDAR signaling.


Subject(s)
Estradiol , Long-Term Potentiation , Rats , Animals , Estradiol/pharmacology , Estradiol/metabolism , Amyloid beta-Peptides/metabolism , Memantine/pharmacology , Hippocampus/metabolism , Glutamates/metabolism
3.
Neural Regen Res ; 18(12): 2569-2572, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37449591

ABSTRACT

The modern view of the immune system as a sensitizing and modulating machinery of the central nervous system is now well recognized. However, the specific mechanisms underlying this fine crosstalk have yet to be fully disentangled. To control cognitive function and behavior, the two systems are engaged in a subtle interacting act. In this scenario, a dual action of pro-inflammatory cytokines in the modulation of brain network connections is emerging. Pro-inflammatory cytokines are indeed required to express physiological plasticity in the hippocampal network while being detrimental when over-expressed during uncontrolled inflammatory processes. In this dynamic equilibrium, synaptic functioning and the performance of neural networks are ensured by maintaining an appropriate balance between pro- and anti-inflammatory molecules in the central nervous system microenvironment.

4.
J Neurochem ; 166(3): 534-546, 2023 08.
Article in English | MEDLINE | ID: mdl-37332201

ABSTRACT

The neuroinflammatory process characterizing multiple sclerosis (MS) is associated with changes in excitatory synaptic transmission and altered central concentrations of the primary excitatory amino acid, L-glutamate (L-Glu). Recent findings report that cerebrospinal fluid (CSF) levels of L-Glu positively correlate with pro-inflammatory cytokines in MS patients. However, to date, there is no evidence about the relationship between the other primary excitatory amino acid, L-aspartate (L-Asp), its derivative D-enantiomer, D-aspartate, and the levels of pro-inflammatory and anti-inflammatory cytokines in the CSF of MS. In the present study, we measured by HPLC the levels of these amino acids in the cortex, hippocampus, cerebellum, and spinal cord of mice affected by experimental autoimmune encephalomyelitis (EAE). Interestingly, in support of glutamatergic neurotransmission abnormalities in neuroinflammatory conditions, we showed reduced L-Asp levels in the cortex and spinal cord of EAE mice and increased D-aspartate/total aspartate ratio within the cerebellum and spinal cord of these animals. Additionally, we found significantly decreased CSF levels of L-Asp in both relapsing-remitting (n = 157) MS (RR-MS) and secondary progressive/primary progressive (n = 22) (SP/PP-MS) patients, compared to control subjects with other neurological diseases (n = 40). Importantly, in RR-MS patients, L-Asp levels were correlated with the CSF concentrations of the inflammatory biomarkers G-CSF, IL-1ra, MIP-1ß, and Eotaxin, indicating that the central content of this excitatory amino acid, as previously reported for L-Glu, reflects a neuroinflammatory environment in MS. In keeping with this, we revealed that CSF L-Asp levels were positively correlated with those of L-Glu, highlighting the convergent variation of these two excitatory amino acids under inflammatory synaptopathy occurring in MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Multiple Sclerosis/metabolism , Aspartic Acid/cerebrospinal fluid , D-Aspartic Acid/metabolism , Spinal Cord/metabolism , Brain/metabolism , Synaptic Transmission , Excitatory Amino Acids/metabolism , Glutamic Acid/metabolism , Cytokines/metabolism
5.
J Neurol Neurosurg Psychiatry ; 94(5): 389-395, 2023 05.
Article in English | MEDLINE | ID: mdl-36653171

ABSTRACT

Psychiatric symptoms frequently occur in multiple sclerosis (MS), presenting with a complex phenomenology that encompasses a large clinical spectrum from clear-cut psychiatric disorders up to isolated psychopathological manifestations. Despite their relevant impact on the overall disease burden, such clinical features are often misdiagnosed, receive suboptimal treatment and are not systematically evaluated in the quantification of disease activity. The development of psychiatric symptoms in MS underpins a complex pathogenesis involving both emotional reactions to a disabling disease and structural multifocal central nervous system damage. Here, we review MS psychopathological manifestations under a biological perspective, highlighting the pathogenic relevance of synaptic and neural network dysfunction. Evidence obtained from human and experimental disease models suggests that MS-related psychiatric phenomenology is part of a disconnection syndrome due to diffuse inflammatory and neurodegenerative brain damage.


Subject(s)
Mental Disorders , Multiple Sclerosis , Humans , Multiple Sclerosis/pathology , Inflammation/pathology
6.
Neuropharmacology ; 225: 109373, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36502868

ABSTRACT

Pathological accumulation of Aß oligomers has been linked to neuronal networks hyperexcitability, potentially underpinned by glutamatergic AMPA receptors (AMPARs) dysfunction. We aimed to investigate whether the non-competitive block of AMPARs was able to counteract the alteration of hippocampal epileptic threshold, and of synaptic plasticity linked to Aß oligomers accumulation, being this glutamate receptor a valuable specific therapeutic target. In this work, we showed that the non-competitive AMPARs antagonist perampanel (PER) which, per se, did not affect physiological synaptic transmission, was able to counteract Aß-induced hyperexcitability. Moreover, AMPAR antagonism was able to counteract Aß-induced hippocampal LTP impairment and hippocampal-based cognitive deficits in Aß oligomers-injected mice, while retaining antiseizure efficacy. Beside this, AMPAR antagonism was also able to reduce the increased expression of proinflammatory cytokines in this mice model, also suggesting the presence of an anti-inflammatory activity. Thus, targeting AMPARs might be a valuable strategy to reduce both hippocampal networks hyperexcitability and synaptic plasticity deficits induced by Aß oligomers accumulation.


Subject(s)
Cerebral Amyloid Angiopathy , Cognitive Dysfunction , Excitatory Amino Acid Antagonists , Hippocampus , Receptors, AMPA , Animals , Mice , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Amyloid beta-Peptides/metabolism , Cognition/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Hippocampus/drug effects , Hippocampus/physiopathology , Receptors, AMPA/antagonists & inhibitors , Cerebral Amyloid Angiopathy/therapy , Cognitive Dysfunction/therapy
7.
Cell Rep ; 37(10): 110094, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34879272

ABSTRACT

Cognitive impairment (CI) is a disabling concomitant of multiple sclerosis (MS) with a complex and controversial pathogenesis. The cytokine interleukin-17A (IL-17A) is involved in the immune pathogenesis of MS, but its possible effects on synaptic function and cognition are still largely unexplored. In this study, we show that the IL-17A receptor (IL-17RA) is highly expressed by hippocampal neurons in the CA1 area and that exposure to IL-17A dose-dependently disrupts hippocampal long-term potentiation (LTP) through the activation of its receptor and p38 mitogen-activated protein kinase (MAPK). During experimental autoimmune encephalomyelitis (EAE), IL-17A overexpression is paralleled by hippocampal LTP dysfunction. An in vivo behavioral analysis shows that visuo-spatial learning abilities are preserved when EAE is induced in mice lacking IL-17A. Overall, this study suggests a key role for the IL-17 axis in the neuro-immune cross-talk occurring in the hippocampal CA1 area and its potential involvement in synaptic dysfunction and MS-related CI.


Subject(s)
Behavior, Animal , CA1 Region, Hippocampal/metabolism , Cognition , Encephalomyelitis, Autoimmune, Experimental/metabolism , Interleukin-17/metabolism , Neuronal Plasticity , Receptors, Interleukin-17/metabolism , Synapses/metabolism , Animals , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/physiopathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Encephalomyelitis, Autoimmune, Experimental/psychology , Interleukin-17/genetics , Long-Term Potentiation , Male , Mice, Biozzi , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-17/genetics , Signal Transduction , Spatial Learning , Synapses/pathology , p38 Mitogen-Activated Protein Kinases
8.
Int J Mol Sci ; 22(18)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34575917

ABSTRACT

Multiple sclerosis (MS) has been clinically considered a chronic inflammatory disease of the white matter; however, in the last decade growing evidence supported an important role of gray matter pathology as a major contributor of MS-related disability and the involvement of synaptic structures assumed a key role in the pathophysiology of the disease. Synaptic contacts are considered central units in the information flow, involved in synaptic transmission and plasticity, critical processes for the shaping and functioning of brain networks. During the course of MS, the immune system and its diffusible mediators interact with synaptic structures leading to changes in their structure and function, influencing brain network dynamics. The purpose of this review is to provide an overview of the existing literature on synaptic involvement during experimental and human MS, in order to understand the mechanisms by which synaptic failure eventually leads to brain networks alterations and contributes to disabling MS symptoms and disease progression.


Subject(s)
Disease Susceptibility , Multiple Sclerosis/etiology , Multiple Sclerosis/metabolism , Synapses/metabolism , Synaptic Transmission , Animals , Biomarkers , Disease Models, Animal , Disease Progression , Encephalomyelitis, Autoimmune, Experimental , Humans , Inflammation , Microglia/immunology , Microglia/metabolism , Microglia/pathology , Multiple Sclerosis/diagnosis
9.
Brain ; 144(11): 3477-3491, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34297092

ABSTRACT

Misfolding and aggregation of α-synuclein are specific features of Parkinson's disease and other neurodegenerative diseases defined as synucleinopathies. Parkinson's disease progression has been correlated with the formation and extracellular release of α-synuclein aggregates, as well as with their spread from neuron to neuron. Therapeutic interventions in the initial stages of Parkinson's disease require a clear understanding of the mechanisms by which α-synuclein disrupts the physiological synaptic and plastic activity of the basal ganglia. For this reason, we identified two early time points to clarify how the intrastriatal injection of α-synuclein-preformed fibrils in rodents via retrograde transmission induces time-dependent electrophysiological and behavioural alterations. We found that intrastriatal α-synuclein-preformed fibrils perturb the firing rate of dopaminergic neurons in the substantia nigra pars compacta, while the discharge of putative GABAergic cells of the substantia nigra pars reticulata is unchanged. The α-synuclein-induced dysregulation of nigrostriatal function also impairs, in a time-dependent manner, the two main forms of striatal synaptic plasticity, long-term potentiation and long-term depression. We also observed an increased glutamatergic transmission measured as an augmented frequency of spontaneous excitatory synaptic currents. These changes in neuronal function in the substantia nigra pars compacta and striatum were observed before overt neuronal death occurred. In an additional set of experiments, we were able to rescue α-synuclein-induced alterations of motor function, striatal synaptic plasticity and increased spontaneous excitatory synaptic currents by subchronic treatment with l-DOPA, a precursor of dopamine widely used in the therapy of Parkinson's disease, clearly demonstrating that a dysfunctional dopamine system plays a critical role in the early phases of the disease.


Subject(s)
Neuronal Plasticity/physiology , Parkinson Disease/physiopathology , Substantia Nigra/physiopathology , Synaptic Transmission/physiology , alpha-Synuclein/toxicity , Animals , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Male , Parkinson Disease/metabolism , Rats , Rats, Wistar , Substantia Nigra/metabolism , alpha-Synuclein/metabolism
10.
Front Neurosci ; 14: 572511, 2020.
Article in English | MEDLINE | ID: mdl-33192257

ABSTRACT

Mounting experimental evidence demonstrate that sex neuroactive steroids (neurosteroids) are essential for memory formation. Neurosteroids have a profound impact on the function and structure of neural circuits and their local synthesis is necessary for the induction of both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission and for neural spine formation in different areas of the central nervous system (CNS). Several studies demonstrated that in the hippocampus, 17ß-estradiol (E2) is necessary for inducing LTP, while 5α-dihydrotestosterone (DHT) is necessary for inducing LTD. This contribution has been proven by administering sex neurosteroids in rodent models and by using blocking agents of their synthesis or of their specific receptors. The general opposite role of sex neurosteroids in synaptic plasticity appears to be dependent on their different local availability in response to low or high frequency of synaptic stimulation, allowing the induction of bidirectional synaptic plasticity. The relevant contribution of these neurosteroids to synaptic plasticity has also been described in other brain regions involved in memory processes such as motor learning, as in the case of the vestibular nuclei, the cerebellum, and the basal ganglia, or as the emotional circuit of the amygdala. The rapid effects of sex neurosteroids on neural synaptic plasticity need the maintenance of a tonic or phasic local steroid synthesis determined by neural activity but might also be influenced by circulating hormones, age, and gender. To disclose the exact mechanisms how sex neurosteroids participate in finely tuning long-term synaptic changes and spine remodeling, further investigation is required.

11.
Front Cell Neurosci ; 14: 158, 2020.
Article in English | MEDLINE | ID: mdl-32848606

ABSTRACT

The pathogenesis of Parkinson's disease (PD) is thought to rely on a complex interaction between the patient's genetic background and a variety of largely unknown environmental factors. In this scenario, the investigation of the genetic bases underlying familial PD could unveil key molecular pathways to be targeted by new disease-modifying therapies, still currently unavailable. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are responsible for the majority of inherited familial PD cases and can also be found in sporadic PD, but the pathophysiological functions of LRRK2 have not yet been fully elucidated. Here, we will review the evidence obtained in transgenic LRRK2 experimental models, characterized by altered striatal synaptic transmission, mitochondrial dysfunction, and α-synuclein aggregation. Interestingly, the processes triggered by mutant LRRK2 might represent early pathological phenomena in the pathogenesis of PD, anticipating the typical neurodegenerative features characterizing the late phases of the disease. A comprehensive view of LRRK2 neuronal pathophysiology will support the possible clinical application of pharmacological compounds targeting this protein, with potential therapeutic implications for patients suffering from both familial and sporadic PD.

12.
Neurobiol Dis ; 140: 104848, 2020 07.
Article in English | MEDLINE | ID: mdl-32222474

ABSTRACT

Energy depletion caused by ischemic brain insults may result in persistent neuronal depolarization accompanied by hyper-stimulation of ionotropic glutamate receptors and excitotoxic phenomena, possibly leading to cell death. The use of glutamate receptor antagonists, such as the AMPARs antagonist Perampanel (PER), might be a pharmacological approach to counteract the excessive over-activation of glutamate receptors providing neuroprotective effects. Using electrophysiological and molecular analyses, we investigated the effect of PER against in vitro ischemia obtained by oxygen and glucose deprivation (OGD) in rat slices of two brain structures particularly sensitive to ischemic insults, the nucleus striatum and the hippocampus. We found that in these regions PER was able to avoid the OGD-induced neuronal suffering, at low doses not reducing basal excitatory synaptic transmission and not altering long-term potentiation (LTP) induction. Furthermore, in both the analysed regions, PER blocked a pathological form of LTP, namely ischemic LTP (iLTP). Finally, we hypothesized that the protective effect of PER against OGD was due to its capability to normalize the altered synaptic localization and function of AMPAR subunits, occuring after an ischemic insult. Taken together these findings support the idea that PER is a drug potentially effective to counteract ischemic damage.


Subject(s)
Brain Ischemia/physiopathology , Hippocampus/drug effects , Neurons/drug effects , Pyridones/pharmacology , Receptors, AMPA/metabolism , Animals , Cell Death , Corpus Striatum/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/physiology , Long-Term Potentiation/drug effects , Male , Neuroprotective Agents , Nitriles , Rats , Rats, Wistar , Receptors, Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...