Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Toxins (Basel) ; 16(2)2024 02 06.
Article in English | MEDLINE | ID: mdl-38393169

ABSTRACT

Cyanobacterial harmful algal proliferations (cyanoHAPs) are increasingly associated with dog and livestock deaths when benthic mats break free of their substrate and float to the surface. Fatalities have been linked to neurotoxicosis from anatoxins, potent alkaloids produced by certain genera of filamentous cyanobacteria. After numerous reports of dog illnesses and deaths at a popular recreation site on Lady Bird Lake, Austin, Texas in late summer 2019, water and floating mat samples were collected from several sites along the reservoir. Water quality parameters were measured and mat samples were maintained for algal isolation and DNA identification. Samples were also analyzed for cyanobacterial toxins using LC-MS. Dihydroanatoxin-a was detected in mat materials from two of the four sites (0.6-133 ng/g wet weight) while water samples remained toxin-free over the course of the sampling period; no other cyanobacterial toxins were detected. DNA sequencing analysis of cyanobacterial isolates yielded a total of 11 genera, including Geitlerinema, Tyconema, Pseudanabaena, and Phormidium/Microcoleus, taxa known to produce anatoxins, including dihydroanatoxin, among other cyanotoxins. Analyses indicate that low daily upriver dam discharge, higher TP and NO3 concentrations, and day of the year were the main parameters associated with the presence of toxic floating cyanobacterial mats.


Subject(s)
Bacterial Toxins , Cyanobacteria , Tropanes , Humans , Animals , Dogs , Bacterial Toxins/genetics , Bacterial Toxins/toxicity , Bacterial Toxins/analysis , Texas , Rivers/microbiology , Cyanobacteria Toxins
2.
Lipids ; 56(1): 31-47, 2021 01.
Article in English | MEDLINE | ID: mdl-32777095

ABSTRACT

Eutrophication of the Florida Everglades, USA, has altered the characteristics of the ecosystem, but management strategies are being implemented to accelerate recovery. In this study, we described lipid compositional similarities and differences between periphyton, fish, and crustaceans, and explored if eutrophication and creation of new open-water sloughs in phosphorus (P)-impacted regions of a Northern Everglades impoundment resulted in changes in periphyton biomass and lipid composition, and the lipid composition of a ubiquitous omnivore, Gambusia holbrooki. Lipid biomarker analysis provided insight into microbial community composition, quality of basal resources, and potential resources utilized by consumers. Periphyton biomass and phospholipid fatty acid (PLFA) composition differed in response to eutrophication, but not between P-impacted control and treatment plots. Shifts in relative abundances of lipids indicative of diatoms and green algae mirrored known taxonomic shifts due to eutrophication. For fauna, PLFA were a small and relatively distinct component of the overall total lipid make-up, and profiles were similar between control and treatment plots. However, the PLFA profile of G. holbrooki differed between oligotrophic and eutrophic regions. Fish and crustacean lipids contained significantly greater relative abundances of polyunsaturated fatty acids than were found in periphyton, and profiles differed between fish and crustaceans, suggesting organisms were selectively accumulating or elongating and desaturating lipids de novo, to meet physiological needs. This study builds on findings of microbial responses to eutrophication and recent observations that consumer PLFA profiles can also shift with P-enrichment.


Subject(s)
Lipids/analysis , Animals , Biomarkers/analysis , Crustacea , Eutrophication , Fishes , Florida , Periphyton , United States
4.
Sci Adv ; 5(1): eaav0486, 2019 01.
Article in English | MEDLINE | ID: mdl-30662951

ABSTRACT

River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.


Subject(s)
Carbon Cycle/physiology , Ecosystem , Environmental Monitoring/methods , Rivers/microbiology , Temperature , Human Activities , Humans
5.
Microb Ecol ; 64(4): 893-908, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22832920

ABSTRACT

Alterations in microbial community composition, biomass, and function in the Florida Everglades impacted by cultural eutrophication reflect a new physicochemical environment associated with monotypic stands of Typha domingensis. Phospholipid fatty acid (PLFA) biomarkers were used to quantify microbial responses in detritus and surface soils in an active management experiment in the eutrophic Everglades. Creation of open plots through removal of Typha altered the physical and chemical characteristics of the region. Mass of PLFA biomarkers increased in open plots, but magnitude of changes differed among microbial groups. Biomarkers indicative of Gram-negative bacteria and fungi were significantly greater in open plots, reflective of the improved oxic environment. Reduction in the proportion of cyclopropyl lipids and the ratio of Gram-positive to Gram-negative bacteria in open plots further suggested an altered oxygen environment and conditions for the rapid growth of Gram-negative bacteria. Changes in the PLFA composition were greater in floc relative to soils, reflective of rapid inputs of new organic matter and direct interaction with the new physicochemical environment. Created open plot microbial mass and composition were significantly different from the oligotrophic Everglades due to differences in phosphorus availability, plant community structure, and a shift to organic peat from marl-peat soils. PLFA analysis also captured the dynamic inter-annual hydrologic variability, notably in PLFA concentrations, but to a lesser degree content. Recently, use of concentration has been advocated over content in studies of soil biogeochemistry, and our results highlight the differential response of these two quantitative measures to similar pressures.


Subject(s)
Phosphorus/metabolism , Soil Microbiology , Soil/chemistry , Typhaceae/growth & development , Biomass , Eutrophication , Fatty Acids/analysis , Florida , Phospholipids/analysis , Phosphorus/analysis , Phosphorus/chemistry , Soil/analysis , Wetlands
6.
J Phycol ; 48(2): 303-11, 2012 Apr.
Article in English | MEDLINE | ID: mdl-27009720

ABSTRACT

Algal and plant production of nonphosphorus lipids in place of phospholipids is a physiological response to low phosphorus (P) availability. This response has been shown in culture and in marine plankton studies, but examples from freshwater algae remain minimal. Herein, we analyzed the nutrient contents and lipid composition of periphyton communities across the Florida Everglades ecosystem. We hypothesized that in phosphate-poor areas, periphyton in high- and low-sulfate waters would vary the proportion of sulfolipids (SLs) and betaine lipids (BLs), respectively. In phosphate-enriched areas, periphyton would produce more phospholipids (PLs). We observed that at low-P sites, PLs were a minor lipid component. In cyanobacteria-dominated periphyton where sulfate was abundant, BLs were only slightly more abundant than SLs. However, in the low-P, low-sulfate area, periphyton were comprised to a greater degree green algae and diatoms, and BLs represented the majority of the total lipids. Even in a P-rich area, PLs were a small component of periphyton lipid profiles. Despite the phosphorus limitations of the Everglades, periphyton can develop tremendous biomass. Our results suggest a physiological response by periphyton to oligotrophic conditions whereby periphyton increase abundances of nonphosphorus lipids and have reduced proportions of PLs.

SELECTION OF CITATIONS
SEARCH DETAIL